{"title":"气固反应的CFD模拟:氢还原铁和锰氧化物的分析","authors":"Mopeli Khama, Q. Reynolds","doi":"10.3390/mca28020043","DOIUrl":null,"url":null,"abstract":"Metallurgical processes are characterized by a complex interplay of heat and mass transfer, momentum transfer, and reaction kinetics, and these interactions play a crucial role in reactor performance. Integrating chemistry and transport results in stiff and non-linear equations and longer time and length scales, which ultimately leads to a high computational expense. The current study employs the OpenFOAM solver based on a fictitious domain method to analyze gas-solid reactions in a porous medium using hydrogen as a reducing agent. The reduction of oxides with hydrogen involves the hierarchical phenomena that influence the reaction rates at various temporal and spatial scales; thus, multi-scale models are needed to bridge the length scale from micro-scale to macro-scale accurately. As a first step towards developing such capabilities, the current study analyses OpenFOAM reacting flow methods in cases related to hydrogen reduction of iron and manganese oxides. Since reduction of the oxides of interest with hydrogen requires significant modifications to the current industrial processes, this model can aid in the design and optimization. The model was verified against experimental data and the dynamic features of the porous medium observed as the reaction progresses is well captured by the model.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFD Modelling of Gas-Solid Reactions: Analysis of Iron and Manganese Oxides Reduction with Hydrogen\",\"authors\":\"Mopeli Khama, Q. Reynolds\",\"doi\":\"10.3390/mca28020043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metallurgical processes are characterized by a complex interplay of heat and mass transfer, momentum transfer, and reaction kinetics, and these interactions play a crucial role in reactor performance. Integrating chemistry and transport results in stiff and non-linear equations and longer time and length scales, which ultimately leads to a high computational expense. The current study employs the OpenFOAM solver based on a fictitious domain method to analyze gas-solid reactions in a porous medium using hydrogen as a reducing agent. The reduction of oxides with hydrogen involves the hierarchical phenomena that influence the reaction rates at various temporal and spatial scales; thus, multi-scale models are needed to bridge the length scale from micro-scale to macro-scale accurately. As a first step towards developing such capabilities, the current study analyses OpenFOAM reacting flow methods in cases related to hydrogen reduction of iron and manganese oxides. Since reduction of the oxides of interest with hydrogen requires significant modifications to the current industrial processes, this model can aid in the design and optimization. The model was verified against experimental data and the dynamic features of the porous medium observed as the reaction progresses is well captured by the model.\",\"PeriodicalId\":53224,\"journal\":{\"name\":\"Mathematical & Computational Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical & Computational Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mca28020043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28020043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
CFD Modelling of Gas-Solid Reactions: Analysis of Iron and Manganese Oxides Reduction with Hydrogen
Metallurgical processes are characterized by a complex interplay of heat and mass transfer, momentum transfer, and reaction kinetics, and these interactions play a crucial role in reactor performance. Integrating chemistry and transport results in stiff and non-linear equations and longer time and length scales, which ultimately leads to a high computational expense. The current study employs the OpenFOAM solver based on a fictitious domain method to analyze gas-solid reactions in a porous medium using hydrogen as a reducing agent. The reduction of oxides with hydrogen involves the hierarchical phenomena that influence the reaction rates at various temporal and spatial scales; thus, multi-scale models are needed to bridge the length scale from micro-scale to macro-scale accurately. As a first step towards developing such capabilities, the current study analyses OpenFOAM reacting flow methods in cases related to hydrogen reduction of iron and manganese oxides. Since reduction of the oxides of interest with hydrogen requires significant modifications to the current industrial processes, this model can aid in the design and optimization. The model was verified against experimental data and the dynamic features of the porous medium observed as the reaction progresses is well captured by the model.
期刊介绍:
Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.