气固反应的CFD模拟:氢还原铁和锰氧化物的分析

IF 1.9 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Mopeli Khama, Q. Reynolds
{"title":"气固反应的CFD模拟:氢还原铁和锰氧化物的分析","authors":"Mopeli Khama, Q. Reynolds","doi":"10.3390/mca28020043","DOIUrl":null,"url":null,"abstract":"Metallurgical processes are characterized by a complex interplay of heat and mass transfer, momentum transfer, and reaction kinetics, and these interactions play a crucial role in reactor performance. Integrating chemistry and transport results in stiff and non-linear equations and longer time and length scales, which ultimately leads to a high computational expense. The current study employs the OpenFOAM solver based on a fictitious domain method to analyze gas-solid reactions in a porous medium using hydrogen as a reducing agent. The reduction of oxides with hydrogen involves the hierarchical phenomena that influence the reaction rates at various temporal and spatial scales; thus, multi-scale models are needed to bridge the length scale from micro-scale to macro-scale accurately. As a first step towards developing such capabilities, the current study analyses OpenFOAM reacting flow methods in cases related to hydrogen reduction of iron and manganese oxides. Since reduction of the oxides of interest with hydrogen requires significant modifications to the current industrial processes, this model can aid in the design and optimization. The model was verified against experimental data and the dynamic features of the porous medium observed as the reaction progresses is well captured by the model.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFD Modelling of Gas-Solid Reactions: Analysis of Iron and Manganese Oxides Reduction with Hydrogen\",\"authors\":\"Mopeli Khama, Q. Reynolds\",\"doi\":\"10.3390/mca28020043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metallurgical processes are characterized by a complex interplay of heat and mass transfer, momentum transfer, and reaction kinetics, and these interactions play a crucial role in reactor performance. Integrating chemistry and transport results in stiff and non-linear equations and longer time and length scales, which ultimately leads to a high computational expense. The current study employs the OpenFOAM solver based on a fictitious domain method to analyze gas-solid reactions in a porous medium using hydrogen as a reducing agent. The reduction of oxides with hydrogen involves the hierarchical phenomena that influence the reaction rates at various temporal and spatial scales; thus, multi-scale models are needed to bridge the length scale from micro-scale to macro-scale accurately. As a first step towards developing such capabilities, the current study analyses OpenFOAM reacting flow methods in cases related to hydrogen reduction of iron and manganese oxides. Since reduction of the oxides of interest with hydrogen requires significant modifications to the current industrial processes, this model can aid in the design and optimization. The model was verified against experimental data and the dynamic features of the porous medium observed as the reaction progresses is well captured by the model.\",\"PeriodicalId\":53224,\"journal\":{\"name\":\"Mathematical & Computational Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical & Computational Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mca28020043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28020043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

冶金过程的特点是传热、传质、动量传递和反应动力学的复杂相互作用,这些相互作用在反应器性能中起着至关重要的作用。将化学和输运结合起来会导致方程僵硬和非线性,时间和长度尺度更长,最终导致较高的计算费用。本研究采用基于虚拟域方法的OpenFOAM求解器,以氢为还原剂,分析多孔介质中的气固反应。氢还原氧化物涉及在不同时空尺度上影响反应速率的层次现象;因此,需要多尺度模型来准确地将长度尺度从微观尺度过渡到宏观尺度。作为开发这种能力的第一步,目前的研究分析了OpenFOAM在氢还原铁和锰氧化物的情况下的反应流方法。由于用氢还原感兴趣的氧化物需要对当前的工业过程进行重大修改,因此该模型可以帮助设计和优化。用实验数据对模型进行了验证,模型较好地反映了反应过程中多孔介质的动态特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CFD Modelling of Gas-Solid Reactions: Analysis of Iron and Manganese Oxides Reduction with Hydrogen
Metallurgical processes are characterized by a complex interplay of heat and mass transfer, momentum transfer, and reaction kinetics, and these interactions play a crucial role in reactor performance. Integrating chemistry and transport results in stiff and non-linear equations and longer time and length scales, which ultimately leads to a high computational expense. The current study employs the OpenFOAM solver based on a fictitious domain method to analyze gas-solid reactions in a porous medium using hydrogen as a reducing agent. The reduction of oxides with hydrogen involves the hierarchical phenomena that influence the reaction rates at various temporal and spatial scales; thus, multi-scale models are needed to bridge the length scale from micro-scale to macro-scale accurately. As a first step towards developing such capabilities, the current study analyses OpenFOAM reacting flow methods in cases related to hydrogen reduction of iron and manganese oxides. Since reduction of the oxides of interest with hydrogen requires significant modifications to the current industrial processes, this model can aid in the design and optimization. The model was verified against experimental data and the dynamic features of the porous medium observed as the reaction progresses is well captured by the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical & Computational Applications
Mathematical & Computational Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
10.50%
发文量
86
审稿时长
12 weeks
期刊介绍: Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信