Chenyang Lu, Bentley Turner, Y. Gui, Jacob Burgess, Jiang Xiao, Can-Ming Hu
{"title":"耦合摆水平吸引的实验证明","authors":"Chenyang Lu, Bentley Turner, Y. Gui, Jacob Burgess, Jiang Xiao, Can-Ming Hu","doi":"10.1119/5.0081906","DOIUrl":null,"url":null,"abstract":"We have experimentally demonstrated dissipative coupling in a double pendulum system through observation, which shows three distinctly different patterns of motion over the accessible parameter space. The described dissipative coupling apparatus is easy to manufacture and budget-friendly. The theoretical calculations are also suitable for the undergraduate level. Our experiment can serve as a novel demonstration for ubiquitous dynamic coupling effects encountered in many disparate physical systems. Unlike the well-known spring-coupled pendulums, our experiment employs Lenz's effect to couple the pendulums through electromagnetic damping, which, to the best of our knowledge, has not been demonstrated in the classroom. Our pendulums exhibit level attraction behaviour between two modes, induced by the dissipative coupling. This stands in contrast to the traditionally taught concept of level repulsion (avoided crossing) with spring-coupled pendulums. This experiment showcases distinctly different time domain dynamics of the dissipatively coupled pendulums over the parameter space, characterized by different oscillation patterns, damping rates, and relative phase between the two pendulums, which is a valuable lesson elucidating the dynamics of synchronization in linear systems for undergraduate students.","PeriodicalId":7589,"journal":{"name":"American Journal of Physics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An experimental demonstration of level attraction with coupled pendulums\",\"authors\":\"Chenyang Lu, Bentley Turner, Y. Gui, Jacob Burgess, Jiang Xiao, Can-Ming Hu\",\"doi\":\"10.1119/5.0081906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have experimentally demonstrated dissipative coupling in a double pendulum system through observation, which shows three distinctly different patterns of motion over the accessible parameter space. The described dissipative coupling apparatus is easy to manufacture and budget-friendly. The theoretical calculations are also suitable for the undergraduate level. Our experiment can serve as a novel demonstration for ubiquitous dynamic coupling effects encountered in many disparate physical systems. Unlike the well-known spring-coupled pendulums, our experiment employs Lenz's effect to couple the pendulums through electromagnetic damping, which, to the best of our knowledge, has not been demonstrated in the classroom. Our pendulums exhibit level attraction behaviour between two modes, induced by the dissipative coupling. This stands in contrast to the traditionally taught concept of level repulsion (avoided crossing) with spring-coupled pendulums. This experiment showcases distinctly different time domain dynamics of the dissipatively coupled pendulums over the parameter space, characterized by different oscillation patterns, damping rates, and relative phase between the two pendulums, which is a valuable lesson elucidating the dynamics of synchronization in linear systems for undergraduate students.\",\"PeriodicalId\":7589,\"journal\":{\"name\":\"American Journal of Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1119/5.0081906\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1119/5.0081906","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
An experimental demonstration of level attraction with coupled pendulums
We have experimentally demonstrated dissipative coupling in a double pendulum system through observation, which shows three distinctly different patterns of motion over the accessible parameter space. The described dissipative coupling apparatus is easy to manufacture and budget-friendly. The theoretical calculations are also suitable for the undergraduate level. Our experiment can serve as a novel demonstration for ubiquitous dynamic coupling effects encountered in many disparate physical systems. Unlike the well-known spring-coupled pendulums, our experiment employs Lenz's effect to couple the pendulums through electromagnetic damping, which, to the best of our knowledge, has not been demonstrated in the classroom. Our pendulums exhibit level attraction behaviour between two modes, induced by the dissipative coupling. This stands in contrast to the traditionally taught concept of level repulsion (avoided crossing) with spring-coupled pendulums. This experiment showcases distinctly different time domain dynamics of the dissipatively coupled pendulums over the parameter space, characterized by different oscillation patterns, damping rates, and relative phase between the two pendulums, which is a valuable lesson elucidating the dynamics of synchronization in linear systems for undergraduate students.
期刊介绍:
The mission of the American Journal of Physics (AJP) is to publish articles on the educational and cultural aspects of physics that are useful, interesting, and accessible to a diverse audience of physics students, educators, and researchers. Our audience generally reads outside their specialties to broaden their understanding of physics and to expand and enhance their pedagogical toolkits at the undergraduate and graduate levels.