连通滤波Hopf代数中对映对的平方

Q3 Mathematics
Darij Grinberg
{"title":"连通滤波Hopf代数中对映对的平方","authors":"Darij Grinberg","doi":"10.46298/cm.10431","DOIUrl":null,"url":null,"abstract":"It is well-known that the antipode $S$ of a commutative or cocommutative Hopf\nalgebra satisfies $S^{2}=\\operatorname*{id}$ (where $S^{2}=S\\circ S$).\nRecently, similar results have been obtained by Aguiar, Lauve and Mahajan for\nconnected graded Hopf algebras: Namely, if $H$ is a connected graded Hopf\nalgebra with grading $H=\\bigoplus_{n\\geq0}H_n$, then each positive integer $n$\nsatisfies $\\left( \\operatorname*{id}-S^2\\right)^n \\left( H_n\\right) =0$ and\n(even stronger) \\[ \\left( \\left( \\operatorname{id}+S\\right) \\circ\\left(\n\\operatorname{id}-S^2\\right)^{n-1}\\right) \\left( H_n\\right) = 0. \\] For some\nspecific $H$'s such as the Malvenuto--Reutenauer Hopf algebra\n$\\operatorname{FQSym}$, the exponents can be lowered.\n In this note, we generalize these results in several directions: We replace\nthe base field by a commutative ring, replace the Hopf algebra by a coalgebra\n(actually, a slightly more general object, with no coassociativity required),\nand replace both $\\operatorname{id}$ and $S^2$ by \"coalgebra homomorphisms\" (of\nsorts). Specializing back to connected graded Hopf algebras, we show that the\nexponent $n$ in the identity $\\left( \\operatorname{id}-S^2\\right) ^n \\left(\nH_n\\right) =0$ can be lowered to $n-1$ (for $n>1$) if and only if $\\left(\n\\operatorname{id} - S^2\\right) \\left( H_2\\right) =0$. (A sufficient condition\nfor this is that every pair of elements of $H_1$ commutes; this is satisfied,\ne.g., for $\\operatorname{FQSym}$.)","PeriodicalId":37836,"journal":{"name":"Communications in Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the square of the antipode in a connected filtered Hopf algebra\",\"authors\":\"Darij Grinberg\",\"doi\":\"10.46298/cm.10431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well-known that the antipode $S$ of a commutative or cocommutative Hopf\\nalgebra satisfies $S^{2}=\\\\operatorname*{id}$ (where $S^{2}=S\\\\circ S$).\\nRecently, similar results have been obtained by Aguiar, Lauve and Mahajan for\\nconnected graded Hopf algebras: Namely, if $H$ is a connected graded Hopf\\nalgebra with grading $H=\\\\bigoplus_{n\\\\geq0}H_n$, then each positive integer $n$\\nsatisfies $\\\\left( \\\\operatorname*{id}-S^2\\\\right)^n \\\\left( H_n\\\\right) =0$ and\\n(even stronger) \\\\[ \\\\left( \\\\left( \\\\operatorname{id}+S\\\\right) \\\\circ\\\\left(\\n\\\\operatorname{id}-S^2\\\\right)^{n-1}\\\\right) \\\\left( H_n\\\\right) = 0. \\\\] For some\\nspecific $H$'s such as the Malvenuto--Reutenauer Hopf algebra\\n$\\\\operatorname{FQSym}$, the exponents can be lowered.\\n In this note, we generalize these results in several directions: We replace\\nthe base field by a commutative ring, replace the Hopf algebra by a coalgebra\\n(actually, a slightly more general object, with no coassociativity required),\\nand replace both $\\\\operatorname{id}$ and $S^2$ by \\\"coalgebra homomorphisms\\\" (of\\nsorts). Specializing back to connected graded Hopf algebras, we show that the\\nexponent $n$ in the identity $\\\\left( \\\\operatorname{id}-S^2\\\\right) ^n \\\\left(\\nH_n\\\\right) =0$ can be lowered to $n-1$ (for $n>1$) if and only if $\\\\left(\\n\\\\operatorname{id} - S^2\\\\right) \\\\left( H_2\\\\right) =0$. (A sufficient condition\\nfor this is that every pair of elements of $H_1$ commutes; this is satisfied,\\ne.g., for $\\\\operatorname{FQSym}$.)\",\"PeriodicalId\":37836,\"journal\":{\"name\":\"Communications in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/cm.10431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/cm.10431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

众所周知,交换或共交换Hopfalgebra的对极$S$满足$S^{2}=\ operatorname*{id}$(其中$S^{2}=S\ circS$)。最近,Aguiar、Lauve和Mahajan对连通分次Hopf代数也得到了类似的结果:即,如果$H$是一个分次为$H=\bigoplus_{n\geq0}H_n$的连通分次霍普代数,则每个正整数$n$满足$\left(\operatorname*{id}-S^2\right)^n\left(H_n\right)=0$和(甚至更强)\[\left(\left(\operatorname{id}+S\right)\circ\left(\ operatorname{id}-S^2\right)^{n-1}\right)\left(H_n\right)=0对于某些特定的$H$,如Malvenuto-Ruetenauer-Hopf代数$\运算符名称{FQSym}$,可以降低指数。在这个注释中,我们将这些结果推广到几个方向:我们用交换环代替基域,用余代数代替Hopf代数(实际上,是一个稍微更一般的对象,不需要共缔合性),并用“余代数同态”(部分)代替$\ operatorname{id}$和$S^2$。回到连通分次Hopf代数,我们证明了恒等式$\left(\operatorname{id}-S^2\right)^n\left(H_n\right)=0$可以降低到$n-1$(对于$n>1$)当且仅当$\left(\operatorname{id}-S^2 \right)\left(H_2\right)=0$。(这方面的一个充分条件是$H_1$的每一对元素都进行了交换;这是满足的,例如,对于$\operatorname{FQSym}$。)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the square of the antipode in a connected filtered Hopf algebra
It is well-known that the antipode $S$ of a commutative or cocommutative Hopf algebra satisfies $S^{2}=\operatorname*{id}$ (where $S^{2}=S\circ S$). Recently, similar results have been obtained by Aguiar, Lauve and Mahajan for connected graded Hopf algebras: Namely, if $H$ is a connected graded Hopf algebra with grading $H=\bigoplus_{n\geq0}H_n$, then each positive integer $n$ satisfies $\left( \operatorname*{id}-S^2\right)^n \left( H_n\right) =0$ and (even stronger) \[ \left( \left( \operatorname{id}+S\right) \circ\left( \operatorname{id}-S^2\right)^{n-1}\right) \left( H_n\right) = 0. \] For some specific $H$'s such as the Malvenuto--Reutenauer Hopf algebra $\operatorname{FQSym}$, the exponents can be lowered. In this note, we generalize these results in several directions: We replace the base field by a commutative ring, replace the Hopf algebra by a coalgebra (actually, a slightly more general object, with no coassociativity required), and replace both $\operatorname{id}$ and $S^2$ by "coalgebra homomorphisms" (of sorts). Specializing back to connected graded Hopf algebras, we show that the exponent $n$ in the identity $\left( \operatorname{id}-S^2\right) ^n \left( H_n\right) =0$ can be lowered to $n-1$ (for $n>1$) if and only if $\left( \operatorname{id} - S^2\right) \left( H_2\right) =0$. (A sufficient condition for this is that every pair of elements of $H_1$ commutes; this is satisfied, e.g., for $\operatorname{FQSym}$.)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematics
Communications in Mathematics Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
26
审稿时长
45 weeks
期刊介绍: Communications in Mathematics publishes research and survey papers in all areas of pure and applied mathematics. To be acceptable for publication, the paper must be significant, original and correct. High quality review papers of interest to a wide range of scientists in mathematics and its applications are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信