基于模拟退火算法的印度尼西亚WEC准平面线性PM发电机优化

Budi Azhari, F. D. Wijaya
{"title":"基于模拟退火算法的印度尼西亚WEC准平面线性PM发电机优化","authors":"Budi Azhari, F. D. Wijaya","doi":"10.14203/j.mev.2019.v10.29-35","DOIUrl":null,"url":null,"abstract":"Linear permanent magnet generator (LPMG) is an essential component in recent wave energy converter (WEC) which exploits wave’s heave motion. It could be classified into tubular-type, flat-tricore type, and quasi-flat type. In previous researches, these three models have been studied and designed for pico-scale WEC. Design optimization has further been conducted for flat-tricore LPMG, by using simulated annealing (SA) algorithm. It modified some parameters to minimize the resulted copper loss. This paper aims to optimize a quasi-flat LPMG design by applying SA algorithm. The algorithm would readjust the initial LPMG parts dimension. Then, the output of the optimized design would be analyzed and compared. The results showed that the optimization could reduce the copper loss by up to 73.64 % and increase the efficiency from 83.2 % to 95.57 %. For various load resistances, the optimized design also produces larger efficiency. However, the optimized design has a larger size and produces larger cogging force than the initial design.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":"10 1","pages":"29-35"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quasi-flat linear PM generator optimization using simulated annealing algorithm for WEC in Indonesia\",\"authors\":\"Budi Azhari, F. D. Wijaya\",\"doi\":\"10.14203/j.mev.2019.v10.29-35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear permanent magnet generator (LPMG) is an essential component in recent wave energy converter (WEC) which exploits wave’s heave motion. It could be classified into tubular-type, flat-tricore type, and quasi-flat type. In previous researches, these three models have been studied and designed for pico-scale WEC. Design optimization has further been conducted for flat-tricore LPMG, by using simulated annealing (SA) algorithm. It modified some parameters to minimize the resulted copper loss. This paper aims to optimize a quasi-flat LPMG design by applying SA algorithm. The algorithm would readjust the initial LPMG parts dimension. Then, the output of the optimized design would be analyzed and compared. The results showed that the optimization could reduce the copper loss by up to 73.64 % and increase the efficiency from 83.2 % to 95.57 %. For various load resistances, the optimized design also produces larger efficiency. However, the optimized design has a larger size and produces larger cogging force than the initial design.\",\"PeriodicalId\":30530,\"journal\":{\"name\":\"Journal of Mechatronics Electrical Power and Vehicular Technology\",\"volume\":\"10 1\",\"pages\":\"29-35\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechatronics Electrical Power and Vehicular Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14203/j.mev.2019.v10.29-35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechatronics Electrical Power and Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14203/j.mev.2019.v10.29-35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

线性永磁发电机(LPMG)是利用波浪升沉运动的新型波能转换器(WEC)的重要组成部分。它可分为管状型、扁平三核型和准扁平型。在以往的研究中,这三种模型都是针对微尺度WEC进行研究和设计的。采用模拟退火(SA)算法对平面三核LPMG进行了进一步的设计优化。它修改了一些参数,以尽量减少铜的损失。本文旨在应用SA算法优化准平面LPMG设计。该算法将重新调整初始LPMG零件尺寸。然后,对优化设计的输出进行分析和比较。结果表明,优化后铜的损失可降低73.64%,效率由83.2%提高到95.57%。对于各种负载阻力,优化设计也产生了更大的效率。然而,优化后的设计尺寸更大,产生的齿槽力比初始设计更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-flat linear PM generator optimization using simulated annealing algorithm for WEC in Indonesia
Linear permanent magnet generator (LPMG) is an essential component in recent wave energy converter (WEC) which exploits wave’s heave motion. It could be classified into tubular-type, flat-tricore type, and quasi-flat type. In previous researches, these three models have been studied and designed for pico-scale WEC. Design optimization has further been conducted for flat-tricore LPMG, by using simulated annealing (SA) algorithm. It modified some parameters to minimize the resulted copper loss. This paper aims to optimize a quasi-flat LPMG design by applying SA algorithm. The algorithm would readjust the initial LPMG parts dimension. Then, the output of the optimized design would be analyzed and compared. The results showed that the optimization could reduce the copper loss by up to 73.64 % and increase the efficiency from 83.2 % to 95.57 %. For various load resistances, the optimized design also produces larger efficiency. However, the optimized design has a larger size and produces larger cogging force than the initial design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信