给定保护数的三角形的面消色差数

Q4 Mathematics
Naoki Matsumoto, Yumiko Ohno
{"title":"给定保护数的三角形的面消色差数","authors":"Naoki Matsumoto, Yumiko Ohno","doi":"10.20429/tag.2022.090101","DOIUrl":null,"url":null,"abstract":"A (not necessarily proper) k -coloring c : V ( G ) ! f 1 ; 2 ; : : : ; k g of a graph G on a surface is a facial t -complete k -coloring if every t -tuple of colors appears on the boundary of some face of G . The maximum number k such that G has a facial t complete k -coloring is called a facial t -achromatic number of G , denoted by t ( G ). In this paper, we investigate the relation between the facial 3-achromatic number and guarding number of triangulations on a surface, where a guarding number of a graph G embedded on a surface, denoted by guard( G ), is the smallest size of its guarding set which is a generalized concept of guards in the art gallery problem. We show that for any graph G embedded on a surface, where ∆( G (cid:3) ) is the largest face size of G . Furthermore, we investigate sufficient conditions for a triangulation G on a surface to satisfy 3 ( G ) = guard( G ) + 2. In particular, we prove that every triangulation G on the sphere with guard( G ) = 2 satis(cid:12)es the above equality and that for one with guarding number 3, it also satis(cid:12)es the above equality with sufficiently large number of vertices.","PeriodicalId":37096,"journal":{"name":"Theory and Applications of Graphs","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facial Achromatic Number of Triangulations with Given Guarding Number\",\"authors\":\"Naoki Matsumoto, Yumiko Ohno\",\"doi\":\"10.20429/tag.2022.090101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A (not necessarily proper) k -coloring c : V ( G ) ! f 1 ; 2 ; : : : ; k g of a graph G on a surface is a facial t -complete k -coloring if every t -tuple of colors appears on the boundary of some face of G . The maximum number k such that G has a facial t complete k -coloring is called a facial t -achromatic number of G , denoted by t ( G ). In this paper, we investigate the relation between the facial 3-achromatic number and guarding number of triangulations on a surface, where a guarding number of a graph G embedded on a surface, denoted by guard( G ), is the smallest size of its guarding set which is a generalized concept of guards in the art gallery problem. We show that for any graph G embedded on a surface, where ∆( G (cid:3) ) is the largest face size of G . Furthermore, we investigate sufficient conditions for a triangulation G on a surface to satisfy 3 ( G ) = guard( G ) + 2. In particular, we prove that every triangulation G on the sphere with guard( G ) = 2 satis(cid:12)es the above equality and that for one with guarding number 3, it also satis(cid:12)es the above equality with sufficiently large number of vertices.\",\"PeriodicalId\":37096,\"journal\":{\"name\":\"Theory and Applications of Graphs\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory and Applications of Graphs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20429/tag.2022.090101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Applications of Graphs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20429/tag.2022.090101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

A(不一定是正确的)k着色c: V (G) !f1;2;:::;在一个曲面上的图g的k g是一个面t完全k着色,如果每一个t元的颜色出现在g的某个面的边界上。使G具有面t完全k着色的最大k数称为G的面t消色差数,用t (G)表示。本文研究了曲面上三角形的面3消色差数与保护数之间的关系,其中嵌入在曲面上的图G的保护数记作guard(G),是其保护集的最小大小,这是美术馆问题中警卫的广义概念。我们证明,对于嵌入在曲面上的任意图G,其中∆(G (cid:3))是G的最大面尺寸。进一步研究了曲面上三角剖分G满足3 (G) = guard(G) + 2的充分条件。特别地,我们证明了保护(G) = 2的球面上的每一个三角剖分G满足(cid:12)的上述等式,并且证明了保护数为3的三角剖分G在顶点数足够大的情况下也满足(cid:12)的上述等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facial Achromatic Number of Triangulations with Given Guarding Number
A (not necessarily proper) k -coloring c : V ( G ) ! f 1 ; 2 ; : : : ; k g of a graph G on a surface is a facial t -complete k -coloring if every t -tuple of colors appears on the boundary of some face of G . The maximum number k such that G has a facial t complete k -coloring is called a facial t -achromatic number of G , denoted by t ( G ). In this paper, we investigate the relation between the facial 3-achromatic number and guarding number of triangulations on a surface, where a guarding number of a graph G embedded on a surface, denoted by guard( G ), is the smallest size of its guarding set which is a generalized concept of guards in the art gallery problem. We show that for any graph G embedded on a surface, where ∆( G (cid:3) ) is the largest face size of G . Furthermore, we investigate sufficient conditions for a triangulation G on a surface to satisfy 3 ( G ) = guard( G ) + 2. In particular, we prove that every triangulation G on the sphere with guard( G ) = 2 satis(cid:12)es the above equality and that for one with guarding number 3, it also satis(cid:12)es the above equality with sufficiently large number of vertices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theory and Applications of Graphs
Theory and Applications of Graphs Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.70
自引率
0.00%
发文量
17
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信