关于二维拉格朗日平均曲率方程的注解

IF 0.7 3区 数学 Q2 MATHEMATICS
A. Bhattacharya
{"title":"关于二维拉格朗日平均曲率方程的注解","authors":"A. Bhattacharya","doi":"10.2140/pjm.2022.318.43","DOIUrl":null,"url":null,"abstract":"In this note, we use Warren-Yuan's super isoperimetric inequality on the level sets of subharmonic functions, which is available only in two dimensions, to derive a modified Hessian bound for solutions of the two dimensional Lagrangian mean curvature equation. We assume the Lagrangian phase to be supercritical with bounded second derivatives. Unlike the previous approach, the simplified approach in this proof does not require the Michael-Simon mean value and Sobolev inequalities on generalized submanifolds of $\\mathbb{R}^n$.","PeriodicalId":54651,"journal":{"name":"Pacific Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A note on the two-dimensional Lagrangian mean curvature equation\",\"authors\":\"A. Bhattacharya\",\"doi\":\"10.2140/pjm.2022.318.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, we use Warren-Yuan's super isoperimetric inequality on the level sets of subharmonic functions, which is available only in two dimensions, to derive a modified Hessian bound for solutions of the two dimensional Lagrangian mean curvature equation. We assume the Lagrangian phase to be supercritical with bounded second derivatives. Unlike the previous approach, the simplified approach in this proof does not require the Michael-Simon mean value and Sobolev inequalities on generalized submanifolds of $\\\\mathbb{R}^n$.\",\"PeriodicalId\":54651,\"journal\":{\"name\":\"Pacific Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2022.318.43\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2022.318.43","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

本文利用只存在于二维的次调和函数水平集上的Warren-Yuan超等周不等式,导出了二维拉格朗日平均曲率方程解的修正Hessian界。我们假设二阶导数有界的拉格朗日相是超临界的。与先前的方法不同,本证明中的简化方法不需要$\mathbb{R}^n$的广义子流形上的Michael-Simon均值和Sobolev不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on the two-dimensional Lagrangian mean curvature equation
In this note, we use Warren-Yuan's super isoperimetric inequality on the level sets of subharmonic functions, which is available only in two dimensions, to derive a modified Hessian bound for solutions of the two dimensional Lagrangian mean curvature equation. We assume the Lagrangian phase to be supercritical with bounded second derivatives. Unlike the previous approach, the simplified approach in this proof does not require the Michael-Simon mean value and Sobolev inequalities on generalized submanifolds of $\mathbb{R}^n$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
93
审稿时长
4-8 weeks
期刊介绍: Founded in 1951, PJM has published mathematics research for more than 60 years. PJM is run by mathematicians from the Pacific Rim. PJM aims to publish high-quality articles in all branches of mathematics, at low cost to libraries and individuals. The Pacific Journal of Mathematics is incorporated as a 501(c)(3) California nonprofit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信