用于远程CME表征的多尺度图像预处理和特征跟踪

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
O. Stepanyuk, K. Kozarev, M. Nedal
{"title":"用于远程CME表征的多尺度图像预处理和特征跟踪","authors":"O. Stepanyuk, K. Kozarev, M. Nedal","doi":"10.1051/swsc/2022020","DOIUrl":null,"url":null,"abstract":"Coronal Mass Ejections (CMEs) influence the interplanetary environment over vast distances in the solar system by injecting huge clouds of fast solar plasma and energetic particles (SEPs). A number of fundamental questions remain about how SEPs are produced, but current understanding points to CME-driven shocks and compressions in the solar corona. At the same time, unprecedented remote (AIA, LOFAR, MWA) and in situ (Parker Solar Probe, Solar Orbiter) solar observations are becoming available to constrain existing theories. Here we present a general method for recognition and tracking of objects on solar images – CME shock waves, filaments, active regions. The calculation scheme is based on a multi-scale data representation concept a-trous wavelet transform, and a set of image filtering techniques. We showcase its performance on a small set of CME-related phenomena observed with the SDO/AIA telescope. With the data represented hierarchically on different decomposition and intensity levels, our method allows to extract certain objects and their masks from the imaging observations, in order to track their evolution in time. The method presented here is general and applicable to detecting and tracking various solar and heliospheric phenomena in imaging observations. We implemented this method into a freely available Python library.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-scale Image Preprocessing and Feature Tracking for Remote CME Characterization\",\"authors\":\"O. Stepanyuk, K. Kozarev, M. Nedal\",\"doi\":\"10.1051/swsc/2022020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coronal Mass Ejections (CMEs) influence the interplanetary environment over vast distances in the solar system by injecting huge clouds of fast solar plasma and energetic particles (SEPs). A number of fundamental questions remain about how SEPs are produced, but current understanding points to CME-driven shocks and compressions in the solar corona. At the same time, unprecedented remote (AIA, LOFAR, MWA) and in situ (Parker Solar Probe, Solar Orbiter) solar observations are becoming available to constrain existing theories. Here we present a general method for recognition and tracking of objects on solar images – CME shock waves, filaments, active regions. The calculation scheme is based on a multi-scale data representation concept a-trous wavelet transform, and a set of image filtering techniques. We showcase its performance on a small set of CME-related phenomena observed with the SDO/AIA telescope. With the data represented hierarchically on different decomposition and intensity levels, our method allows to extract certain objects and their masks from the imaging observations, in order to track their evolution in time. The method presented here is general and applicable to detecting and tracking various solar and heliospheric phenomena in imaging observations. We implemented this method into a freely available Python library.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/swsc/2022020\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/swsc/2022020","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

日冕物质抛射(CME)通过注入由快速太阳等离子体和高能粒子(SEP)组成的巨大云层,影响太阳系中远距离的行星际环境。关于SEP是如何产生的,仍然存在许多基本问题,但目前的理解指向日冕物质抛射驱动的太阳日冕中的冲击和压缩。与此同时,前所未有的远程(AIA、LOFAR、MWA)和原位(帕克太阳探测器、太阳轨道飞行器)太阳观测正在成为约束现有理论的手段。在这里,我们提出了一种识别和跟踪太阳图像上物体的通用方法——CME冲击波、细丝、活动区域。该计算方案基于多尺度数据表示概念a-trous小波变换和一组图像滤波技术。我们在SDO/AIA望远镜观测到的一小组CME相关现象上展示了它的性能。利用在不同分解和强度级别上分层表示的数据,我们的方法允许从成像观测中提取某些对象及其遮罩,以跟踪它们在时间上的演变。本文提出的方法是通用的,适用于在成像观测中检测和跟踪各种太阳和日球层现象。我们在一个免费提供的Python库中实现了这个方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-scale Image Preprocessing and Feature Tracking for Remote CME Characterization
Coronal Mass Ejections (CMEs) influence the interplanetary environment over vast distances in the solar system by injecting huge clouds of fast solar plasma and energetic particles (SEPs). A number of fundamental questions remain about how SEPs are produced, but current understanding points to CME-driven shocks and compressions in the solar corona. At the same time, unprecedented remote (AIA, LOFAR, MWA) and in situ (Parker Solar Probe, Solar Orbiter) solar observations are becoming available to constrain existing theories. Here we present a general method for recognition and tracking of objects on solar images – CME shock waves, filaments, active regions. The calculation scheme is based on a multi-scale data representation concept a-trous wavelet transform, and a set of image filtering techniques. We showcase its performance on a small set of CME-related phenomena observed with the SDO/AIA telescope. With the data represented hierarchically on different decomposition and intensity levels, our method allows to extract certain objects and their masks from the imaging observations, in order to track their evolution in time. The method presented here is general and applicable to detecting and tracking various solar and heliospheric phenomena in imaging observations. We implemented this method into a freely available Python library.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信