脑瘫患儿循环平稳性的定量分析

A. Behboodi, Ashwini Sansare, Samuel C. K. Lee
{"title":"脑瘫患儿循环平稳性的定量分析","authors":"A. Behboodi, Ashwini Sansare, Samuel C. K. Lee","doi":"10.3390/biomechanics3010008","DOIUrl":null,"url":null,"abstract":"Smoothness is a hallmark of skilled, coordinated movement, however, mathematically quantifying movement smoothness is nuanced. Several smoothness metrics exist, each having its own limitations and may be specific to a particular motion such as upper limb reaching. To date, there is no consensus on which smoothness metric is the most appropriate for assessing cycling motion in children with cerebral palsy (CP). We evaluated the ability of four preexisting metrics, dimensionless jerk, spectral arc length measure, roughness index, and cross-correlation; and two new metrics, arc length and root mean square error, to quantify the smoothness of cycling in a preexisting dataset from children with CP (mean age 13.7 ± 2.6 years). First, to measure the repeatability of each measure in distinguishing between different levels of un-smoothness, we applied each metric to a set of simulated crank motion signals with a known number of aberrant revolutions using subjects’ actual crank angle data. Second, we used discriminant function analysis to statistically compare the strength of the six metrics, relative to each other, to discriminate between a smooth cycling motion obtained from a dataset of typically developed children (TD), the control group (mean age 14.9 ± 1.4 years), and a less smooth, halted cycling motion obtained from children with CP. Our results show that (1) ArcL showed the highest repeatability in accurately quantifying an unsmooth motion when the same cycling revolutions were presented in a different order, and (2) ArcL and DJ had the highest discriminatory ability to differentiate between an unsmooth and smooth cycling motion. Combining the results from the repeatability and discriminatory analysis, ArcL was the most repeatable and sensitive metric in identifying unsmooth, halted cycling motion from smooth motion. ArcL can hence be used as a metric in future studies to quantify changes in the smoothness of cycling motion pre- vs. post-interventions. Further, this metric may serve as a tool to track motor recovery not just in individuals with CP but in other patient populations with similar neurological deficits that may present with halted, unsmooth cycling motion.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantification of Cycling Smoothness in Children with Cerebral Palsy\",\"authors\":\"A. Behboodi, Ashwini Sansare, Samuel C. K. Lee\",\"doi\":\"10.3390/biomechanics3010008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smoothness is a hallmark of skilled, coordinated movement, however, mathematically quantifying movement smoothness is nuanced. Several smoothness metrics exist, each having its own limitations and may be specific to a particular motion such as upper limb reaching. To date, there is no consensus on which smoothness metric is the most appropriate for assessing cycling motion in children with cerebral palsy (CP). We evaluated the ability of four preexisting metrics, dimensionless jerk, spectral arc length measure, roughness index, and cross-correlation; and two new metrics, arc length and root mean square error, to quantify the smoothness of cycling in a preexisting dataset from children with CP (mean age 13.7 ± 2.6 years). First, to measure the repeatability of each measure in distinguishing between different levels of un-smoothness, we applied each metric to a set of simulated crank motion signals with a known number of aberrant revolutions using subjects’ actual crank angle data. Second, we used discriminant function analysis to statistically compare the strength of the six metrics, relative to each other, to discriminate between a smooth cycling motion obtained from a dataset of typically developed children (TD), the control group (mean age 14.9 ± 1.4 years), and a less smooth, halted cycling motion obtained from children with CP. Our results show that (1) ArcL showed the highest repeatability in accurately quantifying an unsmooth motion when the same cycling revolutions were presented in a different order, and (2) ArcL and DJ had the highest discriminatory ability to differentiate between an unsmooth and smooth cycling motion. Combining the results from the repeatability and discriminatory analysis, ArcL was the most repeatable and sensitive metric in identifying unsmooth, halted cycling motion from smooth motion. ArcL can hence be used as a metric in future studies to quantify changes in the smoothness of cycling motion pre- vs. post-interventions. Further, this metric may serve as a tool to track motor recovery not just in individuals with CP but in other patient populations with similar neurological deficits that may present with halted, unsmooth cycling motion.\",\"PeriodicalId\":72381,\"journal\":{\"name\":\"Biomechanics (Basel, Switzerland)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomechanics (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/biomechanics3010008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biomechanics3010008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

流畅性是熟练、协调运动的标志,然而,从数学上量化运动流畅性是细致入微的。存在几个平滑度度量,每个度量都有自己的局限性,并且可能特定于特定的运动,例如上肢伸展。到目前为止,对于哪种平滑度指标最适合评估脑瘫儿童的自行车运动,还没有达成共识。我们评估了四个预先存在的指标的能力,无量纲急动、光谱弧长测量、粗糙度指数和互相关;以及两个新的指标,弧长和均方根误差,在CP儿童(平均年龄13.7±2.6岁)的预先存在的数据集中量化自行车运动的平稳性。首先,为了测量每种测量在区分不同不平滑程度方面的可重复性,我们使用受试者的实际曲柄角数据,将每种度量应用于一组具有已知异常转数的模拟曲柄运动信号。其次,我们使用判别函数分析对六个指标的强度进行统计比较,以区分从典型发育儿童(TD)数据集、对照组(平均年龄14.9±1.4岁)获得的平稳骑行运动和从CP儿童获得的不太平稳、停止的骑行运动。我们的结果表明:(1)当相同的循环转数以不同的顺序出现时,ArcL在准确量化非光滑运动方面表现出最高的可重复性;(2)ArcL和DJ在区分非光滑和光滑循环运动方面具有最高的辨别能力。结合可重复性和判别分析的结果,ArcL是从平稳运动中识别非平稳、停止循环运动的最可重复和最敏感的指标。因此,在未来的研究中,ArcL可以作为一种指标来量化干预前后自行车运动平稳性的变化。此外,这一指标可以作为一种工具,不仅跟踪CP患者的运动恢复,还可以跟踪其他具有类似神经功能缺陷的患者群体的运动恢复情况,这些缺陷可能表现为自行车运动停止、不平稳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantification of Cycling Smoothness in Children with Cerebral Palsy
Smoothness is a hallmark of skilled, coordinated movement, however, mathematically quantifying movement smoothness is nuanced. Several smoothness metrics exist, each having its own limitations and may be specific to a particular motion such as upper limb reaching. To date, there is no consensus on which smoothness metric is the most appropriate for assessing cycling motion in children with cerebral palsy (CP). We evaluated the ability of four preexisting metrics, dimensionless jerk, spectral arc length measure, roughness index, and cross-correlation; and two new metrics, arc length and root mean square error, to quantify the smoothness of cycling in a preexisting dataset from children with CP (mean age 13.7 ± 2.6 years). First, to measure the repeatability of each measure in distinguishing between different levels of un-smoothness, we applied each metric to a set of simulated crank motion signals with a known number of aberrant revolutions using subjects’ actual crank angle data. Second, we used discriminant function analysis to statistically compare the strength of the six metrics, relative to each other, to discriminate between a smooth cycling motion obtained from a dataset of typically developed children (TD), the control group (mean age 14.9 ± 1.4 years), and a less smooth, halted cycling motion obtained from children with CP. Our results show that (1) ArcL showed the highest repeatability in accurately quantifying an unsmooth motion when the same cycling revolutions were presented in a different order, and (2) ArcL and DJ had the highest discriminatory ability to differentiate between an unsmooth and smooth cycling motion. Combining the results from the repeatability and discriminatory analysis, ArcL was the most repeatable and sensitive metric in identifying unsmooth, halted cycling motion from smooth motion. ArcL can hence be used as a metric in future studies to quantify changes in the smoothness of cycling motion pre- vs. post-interventions. Further, this metric may serve as a tool to track motor recovery not just in individuals with CP but in other patient populations with similar neurological deficits that may present with halted, unsmooth cycling motion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信