{"title":"双相不锈钢在氯化物溶液中腐蚀时的形貌和伏特电位分布的数值分析","authors":"Yuan Li, Sha Qian, Boxin Wei, Y. F. Cheng","doi":"10.1080/1478422X.2022.2111039","DOIUrl":null,"url":null,"abstract":"ABSTRACT Corrosion of duplex stainless steels (DSS) usually initiates at a specific phase, causing preferential phase-dissolution in aqueous environments. Although the scanning Kelvin probe force microscopy (SKPFM) can characterise the phase-corrosion at a micro- or even nanoscale, conventional data-processing methods are insufficient to analyse massive data to derive mechanistic information, and sometimes, even cause a misunderstanding of corrosion evolution. Here we utilised root mean square, power spectral density and fractal evaluations to analyse the time-dependent topographic and Volta potential results obtained by SKPFM during corrosion progression of 2205 DSS in a chloride solution. Corrosion of the DSS preferentially occurs in the ferrite phase and at the ferrite/austenite boundaries in the initial stage. The corrosion changes from the initial galvanic mechanism to mass transfer control with increased time. By using proper numerical tools, the Volta potential results are more insightful of analysing corrosion than the topographic profiles.","PeriodicalId":10711,"journal":{"name":"Corrosion Engineering, Science and Technology","volume":"57 1","pages":"630 - 639"},"PeriodicalIF":1.5000,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical analysis of topographic and Volta potential profiles during corrosion of duplex stainless steel in chloride solution\",\"authors\":\"Yuan Li, Sha Qian, Boxin Wei, Y. F. Cheng\",\"doi\":\"10.1080/1478422X.2022.2111039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Corrosion of duplex stainless steels (DSS) usually initiates at a specific phase, causing preferential phase-dissolution in aqueous environments. Although the scanning Kelvin probe force microscopy (SKPFM) can characterise the phase-corrosion at a micro- or even nanoscale, conventional data-processing methods are insufficient to analyse massive data to derive mechanistic information, and sometimes, even cause a misunderstanding of corrosion evolution. Here we utilised root mean square, power spectral density and fractal evaluations to analyse the time-dependent topographic and Volta potential results obtained by SKPFM during corrosion progression of 2205 DSS in a chloride solution. Corrosion of the DSS preferentially occurs in the ferrite phase and at the ferrite/austenite boundaries in the initial stage. The corrosion changes from the initial galvanic mechanism to mass transfer control with increased time. By using proper numerical tools, the Volta potential results are more insightful of analysing corrosion than the topographic profiles.\",\"PeriodicalId\":10711,\"journal\":{\"name\":\"Corrosion Engineering, Science and Technology\",\"volume\":\"57 1\",\"pages\":\"630 - 639\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Engineering, Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/1478422X.2022.2111039\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Engineering, Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/1478422X.2022.2111039","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Numerical analysis of topographic and Volta potential profiles during corrosion of duplex stainless steel in chloride solution
ABSTRACT Corrosion of duplex stainless steels (DSS) usually initiates at a specific phase, causing preferential phase-dissolution in aqueous environments. Although the scanning Kelvin probe force microscopy (SKPFM) can characterise the phase-corrosion at a micro- or even nanoscale, conventional data-processing methods are insufficient to analyse massive data to derive mechanistic information, and sometimes, even cause a misunderstanding of corrosion evolution. Here we utilised root mean square, power spectral density and fractal evaluations to analyse the time-dependent topographic and Volta potential results obtained by SKPFM during corrosion progression of 2205 DSS in a chloride solution. Corrosion of the DSS preferentially occurs in the ferrite phase and at the ferrite/austenite boundaries in the initial stage. The corrosion changes from the initial galvanic mechanism to mass transfer control with increased time. By using proper numerical tools, the Volta potential results are more insightful of analysing corrosion than the topographic profiles.
期刊介绍:
Corrosion Engineering, Science and Technology provides broad international coverage of research and practice in corrosion processes and corrosion control. Peer-reviewed contributions address all aspects of corrosion engineering and corrosion science; there is strong emphasis on effective design and materials selection to combat corrosion and the journal carries failure case studies to further knowledge in these areas.