{"title":"关于GL$_N$的平衡Voronoï公式","authors":"T. Wong","doi":"10.7169/facm/1810","DOIUrl":null,"url":null,"abstract":"S.D. Miller and F. Zhou have proved a balanced Voronoi summation formula for GL$_N$ over $\\mathbb Q$, which allows one to control the dimensions of the Kloosterman sums appearing on either side of the Voronoi formula. In this note, we prove a balanced Voronoi formula over an arbitrary number field, starting with the Voronoi summation formula of A. Ichino and N. Templier over number fields, allowing one to extend recent results on spectral reciprocity laws to number fields, in special cases.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the balanced Voronoï formula for GL$_N$\",\"authors\":\"T. Wong\",\"doi\":\"10.7169/facm/1810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"S.D. Miller and F. Zhou have proved a balanced Voronoi summation formula for GL$_N$ over $\\\\mathbb Q$, which allows one to control the dimensions of the Kloosterman sums appearing on either side of the Voronoi formula. In this note, we prove a balanced Voronoi formula over an arbitrary number field, starting with the Voronoi summation formula of A. Ichino and N. Templier over number fields, allowing one to extend recent results on spectral reciprocity laws to number fields, in special cases.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/1810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/1810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
S.D. Miller and F. Zhou have proved a balanced Voronoi summation formula for GL$_N$ over $\mathbb Q$, which allows one to control the dimensions of the Kloosterman sums appearing on either side of the Voronoi formula. In this note, we prove a balanced Voronoi formula over an arbitrary number field, starting with the Voronoi summation formula of A. Ichino and N. Templier over number fields, allowing one to extend recent results on spectral reciprocity laws to number fields, in special cases.