关于GL$_N$的平衡Voronoï公式

Pub Date : 2019-10-28 DOI:10.7169/facm/1810
T. Wong
{"title":"关于GL$_N$的平衡Voronoï公式","authors":"T. Wong","doi":"10.7169/facm/1810","DOIUrl":null,"url":null,"abstract":"S.D. Miller and F. Zhou have proved a balanced Voronoi summation formula for GL$_N$ over $\\mathbb Q$, which allows one to control the dimensions of the Kloosterman sums appearing on either side of the Voronoi formula. In this note, we prove a balanced Voronoi formula over an arbitrary number field, starting with the Voronoi summation formula of A. Ichino and N. Templier over number fields, allowing one to extend recent results on spectral reciprocity laws to number fields, in special cases.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the balanced Voronoï formula for GL$_N$\",\"authors\":\"T. Wong\",\"doi\":\"10.7169/facm/1810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"S.D. Miller and F. Zhou have proved a balanced Voronoi summation formula for GL$_N$ over $\\\\mathbb Q$, which allows one to control the dimensions of the Kloosterman sums appearing on either side of the Voronoi formula. In this note, we prove a balanced Voronoi formula over an arbitrary number field, starting with the Voronoi summation formula of A. Ichino and N. Templier over number fields, allowing one to extend recent results on spectral reciprocity laws to number fields, in special cases.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/1810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/1810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

S.D.Miller和F.Zhou证明了GL$_N$在$\mathbb Q$上的平衡Voronoi求和公式,它允许控制出现在Voronoi公式两侧的Kloosterman和的维数。在本文中,我们从a.Ichino和N.Templier在数域上的Voronoi求和公式开始,证明了任意数域上一个平衡的Voronai公式,允许在特殊情况下将最近关于谱互易律的结果推广到数域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the balanced Voronoï formula for GL$_N$
S.D. Miller and F. Zhou have proved a balanced Voronoi summation formula for GL$_N$ over $\mathbb Q$, which allows one to control the dimensions of the Kloosterman sums appearing on either side of the Voronoi formula. In this note, we prove a balanced Voronoi formula over an arbitrary number field, starting with the Voronoi summation formula of A. Ichino and N. Templier over number fields, allowing one to extend recent results on spectral reciprocity laws to number fields, in special cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信