反应扩散系统中行波脉冲的卷积表示

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
S. Kawaguchi
{"title":"反应扩散系统中行波脉冲的卷积表示","authors":"S. Kawaguchi","doi":"10.1155/2023/1410642","DOIUrl":null,"url":null,"abstract":"Convolution representation manifests itself as an important tool in the reduction of partial differential equations. In this study, we consider the convolution representation of traveling pulses in reaction-diffusion systems. Under the adiabatic approximation of inhibitor, a two-component reaction-diffusion system is reduced to a one-component reaction-diffusion equation with a convolution term. To find the traveling speed in a reaction-diffusion system with a global coupling term, the stability of the standing pulse and the relation between traveling speed and bifurcation parameter are examined. Additionally, we consider the traveling pulses in the kernel-based Turing model. The stability of the spatially homogeneous state and most unstable wave number are examined. The practical utilities of the convolution representation of reaction-diffusion systems are discussed.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convolution Representation of Traveling Pulses in Reaction-Diffusion Systems\",\"authors\":\"S. Kawaguchi\",\"doi\":\"10.1155/2023/1410642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolution representation manifests itself as an important tool in the reduction of partial differential equations. In this study, we consider the convolution representation of traveling pulses in reaction-diffusion systems. Under the adiabatic approximation of inhibitor, a two-component reaction-diffusion system is reduced to a one-component reaction-diffusion equation with a convolution term. To find the traveling speed in a reaction-diffusion system with a global coupling term, the stability of the standing pulse and the relation between traveling speed and bifurcation parameter are examined. Additionally, we consider the traveling pulses in the kernel-based Turing model. The stability of the spatially homogeneous state and most unstable wave number are examined. The practical utilities of the convolution representation of reaction-diffusion systems are discussed.\",\"PeriodicalId\":49111,\"journal\":{\"name\":\"Advances in Mathematical Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/1410642\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/1410642","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

卷积表示是偏微分方程归约的一个重要工具。在这项研究中,我们考虑了反应扩散系统中行进脉冲的卷积表示。在抑制剂的绝热近似下,将双组分反应扩散系统简化为具有卷积项的单组分反应-扩散方程。为了求出具有全局耦合项的反应扩散系统的行进速度,研究了驻波的稳定性以及行进速度与分岔参数之间的关系。此外,我们还考虑了基于核的图灵模型中的行波脉冲。研究了空间均匀态的稳定性和最不稳定波数。讨论了反应扩散系统卷积表示的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convolution Representation of Traveling Pulses in Reaction-Diffusion Systems
Convolution representation manifests itself as an important tool in the reduction of partial differential equations. In this study, we consider the convolution representation of traveling pulses in reaction-diffusion systems. Under the adiabatic approximation of inhibitor, a two-component reaction-diffusion system is reduced to a one-component reaction-diffusion equation with a convolution term. To find the traveling speed in a reaction-diffusion system with a global coupling term, the stability of the standing pulse and the relation between traveling speed and bifurcation parameter are examined. Additionally, we consider the traveling pulses in the kernel-based Turing model. The stability of the spatially homogeneous state and most unstable wave number are examined. The practical utilities of the convolution representation of reaction-diffusion systems are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematical Physics
Advances in Mathematical Physics 数学-应用数学
CiteScore
2.40
自引率
8.30%
发文量
151
审稿时长
>12 weeks
期刊介绍: Advances in Mathematical Physics publishes papers that seek to understand mathematical basis of physical phenomena, and solve problems in physics via mathematical approaches. The journal welcomes submissions from mathematical physicists, theoretical physicists, and mathematicians alike. As well as original research, Advances in Mathematical Physics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信