解析框架下水波系的柯西理论

Pub Date : 2020-07-16 DOI:10.3836/tjm/1502179355
T. Alazard, N. Burq, C. Zuily
{"title":"解析框架下水波系的柯西理论","authors":"T. Alazard, N. Burq, C. Zuily","doi":"10.3836/tjm/1502179355","DOIUrl":null,"url":null,"abstract":"In this paper we consider the Cauchy problem for gravity water waves, in a domain with a flat bottom and in arbitrary space dimension. We prove that if the data are of size $\\varepsilon$ in a space of analytic functions which have a holomorphic extension in a strip of size $\\sigma$, then the solution exists up to a time of size $C/\\varepsilon$ in a space of analytic functions having at time $t$ a holomorphic extension in a strip of size $\\sigma - C'\\varepsilon t$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Cauchy Theory for the Water Waves System in an Analytic Framework\",\"authors\":\"T. Alazard, N. Burq, C. Zuily\",\"doi\":\"10.3836/tjm/1502179355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the Cauchy problem for gravity water waves, in a domain with a flat bottom and in arbitrary space dimension. We prove that if the data are of size $\\\\varepsilon$ in a space of analytic functions which have a holomorphic extension in a strip of size $\\\\sigma$, then the solution exists up to a time of size $C/\\\\varepsilon$ in a space of analytic functions having at time $t$ a holomorphic extension in a strip of size $\\\\sigma - C'\\\\varepsilon t$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3836/tjm/1502179355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3836/tjm/1502179355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文研究了在任意空间维数的平坦底域上重力水波的柯西问题。我们证明了在尺寸为$\sigma$的条上具有全纯扩展的解析函数空间中,如果数据的大小为$\varepsilon$,那么在尺寸为$\sigma - C'\varepsilon t$的条上具有$t$全纯扩展的解析函数空间中,解存在到时间为$C/\varepsilon$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Cauchy Theory for the Water Waves System in an Analytic Framework
In this paper we consider the Cauchy problem for gravity water waves, in a domain with a flat bottom and in arbitrary space dimension. We prove that if the data are of size $\varepsilon$ in a space of analytic functions which have a holomorphic extension in a strip of size $\sigma$, then the solution exists up to a time of size $C/\varepsilon$ in a space of analytic functions having at time $t$ a holomorphic extension in a strip of size $\sigma - C'\varepsilon t$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信