使用编码器表示和深度学习模型的自动新冠肺炎错误信息检查系统

Q2 Decision Sciences
Mohamed Taha, Hala H. Zayed, Marina Azer, Mahmoud Gadallah
{"title":"使用编码器表示和深度学习模型的自动新冠肺炎错误信息检查系统","authors":"Mohamed Taha, Hala H. Zayed, Marina Azer, Mahmoud Gadallah","doi":"10.11591/ijai.v12.i1.pp488-495","DOIUrl":null,"url":null,"abstract":"Social media impacts society whether these impacts are positive or negative, or even both. It has become a key component of our lives and a vital news resource. The crisis of covid-19 has impacted the lives of all people. The spread of misinformation causes confusion among individuals. So automated methods are vital to detect the wrong arguments to prevent misinformation spread. The covid-19 news can be classified into two categories: false or real. This paper provides an automated misinformation checking system for the covid-19 news. Five machine learning algorithms and deep learning models are evaluated. The proposed system uses the bidirectional encoder representations from transformers (BERT) with deep learning models. detecting fake news using BERT is a fine-tuning. BERT achieved accuracy (98.83%) as a pre-trained and a classifier on the covid-19 dataset. Better results are obtained using BERT with deep learning models (LSTM), which achieved accuracy (99.1%). The results achieved improvements in the area of fake news detection. Another contribution of the proposed system allows users to detect claims' credibility. It finds the most related real news from experts to the fake claims and answers any question about covid-19 using the universal-sentence-encoder model.","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automated COVID-19 misinformation checking system using encoder representation with deep learning models\",\"authors\":\"Mohamed Taha, Hala H. Zayed, Marina Azer, Mahmoud Gadallah\",\"doi\":\"10.11591/ijai.v12.i1.pp488-495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social media impacts society whether these impacts are positive or negative, or even both. It has become a key component of our lives and a vital news resource. The crisis of covid-19 has impacted the lives of all people. The spread of misinformation causes confusion among individuals. So automated methods are vital to detect the wrong arguments to prevent misinformation spread. The covid-19 news can be classified into two categories: false or real. This paper provides an automated misinformation checking system for the covid-19 news. Five machine learning algorithms and deep learning models are evaluated. The proposed system uses the bidirectional encoder representations from transformers (BERT) with deep learning models. detecting fake news using BERT is a fine-tuning. BERT achieved accuracy (98.83%) as a pre-trained and a classifier on the covid-19 dataset. Better results are obtained using BERT with deep learning models (LSTM), which achieved accuracy (99.1%). The results achieved improvements in the area of fake news detection. Another contribution of the proposed system allows users to detect claims' credibility. It finds the most related real news from experts to the fake claims and answers any question about covid-19 using the universal-sentence-encoder model.\",\"PeriodicalId\":52221,\"journal\":{\"name\":\"IAES International Journal of Artificial Intelligence\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IAES International Journal of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijai.v12.i1.pp488-495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i1.pp488-495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 2

摘要

社交媒体对社会的影响是积极的还是消极的,甚至两者兼而有之。它已经成为我们生活的重要组成部分和重要的新闻资源。2019冠状病毒病危机影响了所有人的生活。错误信息的传播在个人之间造成混乱。因此,自动化方法对于检测错误论点以防止错误信息的传播至关重要。新冠肺炎新闻可以分为两类:假新闻和真新闻。本文提出了一种新型冠状病毒肺炎新闻误报自动检测系统。评估了五种机器学习算法和深度学习模型。提出的系统使用双向编码器表示从变压器(BERT)与深度学习模型。使用BERT检测假新闻是一种微调。BERT在covid-19数据集上作为预训练和分类器实现了准确率(98.83%)。使用BERT和深度学习模型(LSTM)获得了更好的结果,达到了99.1%的准确率。结果在假新闻检测领域取得了进步。拟议系统的另一个贡献是允许用户检测索赔的可信度。它从专家那里找到与虚假言论最相关的真实新闻,并使用通用句子编码器模型回答有关covid-19的任何问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated COVID-19 misinformation checking system using encoder representation with deep learning models
Social media impacts society whether these impacts are positive or negative, or even both. It has become a key component of our lives and a vital news resource. The crisis of covid-19 has impacted the lives of all people. The spread of misinformation causes confusion among individuals. So automated methods are vital to detect the wrong arguments to prevent misinformation spread. The covid-19 news can be classified into two categories: false or real. This paper provides an automated misinformation checking system for the covid-19 news. Five machine learning algorithms and deep learning models are evaluated. The proposed system uses the bidirectional encoder representations from transformers (BERT) with deep learning models. detecting fake news using BERT is a fine-tuning. BERT achieved accuracy (98.83%) as a pre-trained and a classifier on the covid-19 dataset. Better results are obtained using BERT with deep learning models (LSTM), which achieved accuracy (99.1%). The results achieved improvements in the area of fake news detection. Another contribution of the proposed system allows users to detect claims' credibility. It finds the most related real news from experts to the fake claims and answers any question about covid-19 using the universal-sentence-encoder model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IAES International Journal of Artificial Intelligence
IAES International Journal of Artificial Intelligence Decision Sciences-Information Systems and Management
CiteScore
3.90
自引率
0.00%
发文量
170
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信