{"title":"质子导电、高稳定PWA-ZRP掺杂PEM燃料电池复合膜的合成","authors":"Jay Pandey, M. Seepana","doi":"10.1115/1.4056710","DOIUrl":null,"url":null,"abstract":"\n Mechanically stable, proton conducting, and very cost-effective nanocomposite membrane was synthesized successfully using simple and scalable phase-inversion approach. Phosphotungstic acid (PWA) and zirconium phosphate (ZRP) were synthesized using sol-gel and co-precipitation method respectively. PWA-ZrP nanoparticles showed remarkable compatibility with cross-linked poly(vinyl alcohol) (c-PVA) and thus forming uniform and defect-free composite membrane of thickness ~100-120 micron. Doped PWA-ZRP nanoparticles into c-PVA membrane led to introduced bronsted acidic sites and thereby, drastic improvement in proton conductivity of membrane was observed. Composite membrane revealed excellent water-holding capabilities with proton conductivity of 5.2 x10−5 Scm−1 under fully hydrated conditions (i.e. 98% relative humidity). The synthesized proton conducting nanocomposite membrane demonstrated as a potential advanced functional solid electrolyte for possible application in proton exchange membrane fuel cell (PEMFC).","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Proton Conducting and Highly Stable PWA-ZRP Doped Composite Membrane for PEM Fuel Cell\",\"authors\":\"Jay Pandey, M. Seepana\",\"doi\":\"10.1115/1.4056710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Mechanically stable, proton conducting, and very cost-effective nanocomposite membrane was synthesized successfully using simple and scalable phase-inversion approach. Phosphotungstic acid (PWA) and zirconium phosphate (ZRP) were synthesized using sol-gel and co-precipitation method respectively. PWA-ZrP nanoparticles showed remarkable compatibility with cross-linked poly(vinyl alcohol) (c-PVA) and thus forming uniform and defect-free composite membrane of thickness ~100-120 micron. Doped PWA-ZRP nanoparticles into c-PVA membrane led to introduced bronsted acidic sites and thereby, drastic improvement in proton conductivity of membrane was observed. Composite membrane revealed excellent water-holding capabilities with proton conductivity of 5.2 x10−5 Scm−1 under fully hydrated conditions (i.e. 98% relative humidity). The synthesized proton conducting nanocomposite membrane demonstrated as a potential advanced functional solid electrolyte for possible application in proton exchange membrane fuel cell (PEMFC).\",\"PeriodicalId\":15579,\"journal\":{\"name\":\"Journal of Electrochemical Energy Conversion and Storage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrochemical Energy Conversion and Storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4056710\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Energy Conversion and Storage","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056710","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Synthesis of Proton Conducting and Highly Stable PWA-ZRP Doped Composite Membrane for PEM Fuel Cell
Mechanically stable, proton conducting, and very cost-effective nanocomposite membrane was synthesized successfully using simple and scalable phase-inversion approach. Phosphotungstic acid (PWA) and zirconium phosphate (ZRP) were synthesized using sol-gel and co-precipitation method respectively. PWA-ZrP nanoparticles showed remarkable compatibility with cross-linked poly(vinyl alcohol) (c-PVA) and thus forming uniform and defect-free composite membrane of thickness ~100-120 micron. Doped PWA-ZRP nanoparticles into c-PVA membrane led to introduced bronsted acidic sites and thereby, drastic improvement in proton conductivity of membrane was observed. Composite membrane revealed excellent water-holding capabilities with proton conductivity of 5.2 x10−5 Scm−1 under fully hydrated conditions (i.e. 98% relative humidity). The synthesized proton conducting nanocomposite membrane demonstrated as a potential advanced functional solid electrolyte for possible application in proton exchange membrane fuel cell (PEMFC).
期刊介绍:
The Journal of Electrochemical Energy Conversion and Storage focuses on processes, components, devices and systems that store and convert electrical and chemical energy. This journal publishes peer-reviewed archival scholarly articles, research papers, technical briefs, review articles, perspective articles, and special volumes. Specific areas of interest include electrochemical engineering, electrocatalysis, novel materials, analysis and design of components, devices, and systems, balance of plant, novel numerical and analytical simulations, advanced materials characterization, innovative material synthesis and manufacturing methods, thermal management, reliability, durability, and damage tolerance.