F. Zarei, S. Chatterjee, Vani Vardhan Chatterjee, R. R. Haghighi
{"title":"高低有效原子序数物质的亨斯菲尔德单位值的反转趋势","authors":"F. Zarei, S. Chatterjee, Vani Vardhan Chatterjee, R. R. Haghighi","doi":"10.22038/IJMP.2019.42841.1642","DOIUrl":null,"url":null,"abstract":"Introduction: In dual-energy computed tomography (DECT), the Hounsfield values of a substance measured at two different energies are the basic data for finding the chemical properties of a substance. The trends of Hounsfield unit (HU) alterations following the changes in energy are different between the materials with high and low Zeff. The present study aimed to analyze the basic principles related to the attenuation coefficient of x-ray photons and a quantitative explanation is given for the mentioned behavior or trend. \nMaterial and Methods: A mathematical expression was derived for the HU difference between two different scanner voltages. Attenuation coefficients of diverse substances, such as methanol, glycerol, acetic acid, the aqueous solution of potassium hydroxide, and water were calculated for x-ray scanners operating differently at distinct applied voltages and with diverse inherent or added filters. \nResults: Findings of the current study demonstrated that the negative or positive outcome of HU(V1) - HU(V2) equation is not determined by the electron density of a substance. However, it is affected by the effective atomic number (Zeff) of the material and machine parameters specified by the source spectrum. \nConclusion: According to our results, the sign of HU difference [HU(V1) – HU(V2)] for the variable cases of V2 and V1 gives an indication of the effective atomic number of the material under study. The obtained results might be of diagnostic value in the DECT technique.","PeriodicalId":14613,"journal":{"name":"Iranian Journal of Medical Physics","volume":"17 1","pages":"340-349"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reversal Trend of Hounsfield Unit Values of Substances with High and Low Effective Atomic Numbers\",\"authors\":\"F. Zarei, S. Chatterjee, Vani Vardhan Chatterjee, R. R. Haghighi\",\"doi\":\"10.22038/IJMP.2019.42841.1642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: In dual-energy computed tomography (DECT), the Hounsfield values of a substance measured at two different energies are the basic data for finding the chemical properties of a substance. The trends of Hounsfield unit (HU) alterations following the changes in energy are different between the materials with high and low Zeff. The present study aimed to analyze the basic principles related to the attenuation coefficient of x-ray photons and a quantitative explanation is given for the mentioned behavior or trend. \\nMaterial and Methods: A mathematical expression was derived for the HU difference between two different scanner voltages. Attenuation coefficients of diverse substances, such as methanol, glycerol, acetic acid, the aqueous solution of potassium hydroxide, and water were calculated for x-ray scanners operating differently at distinct applied voltages and with diverse inherent or added filters. \\nResults: Findings of the current study demonstrated that the negative or positive outcome of HU(V1) - HU(V2) equation is not determined by the electron density of a substance. However, it is affected by the effective atomic number (Zeff) of the material and machine parameters specified by the source spectrum. \\nConclusion: According to our results, the sign of HU difference [HU(V1) – HU(V2)] for the variable cases of V2 and V1 gives an indication of the effective atomic number of the material under study. The obtained results might be of diagnostic value in the DECT technique.\",\"PeriodicalId\":14613,\"journal\":{\"name\":\"Iranian Journal of Medical Physics\",\"volume\":\"17 1\",\"pages\":\"340-349\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22038/IJMP.2019.42841.1642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22038/IJMP.2019.42841.1642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Health Professions","Score":null,"Total":0}
Reversal Trend of Hounsfield Unit Values of Substances with High and Low Effective Atomic Numbers
Introduction: In dual-energy computed tomography (DECT), the Hounsfield values of a substance measured at two different energies are the basic data for finding the chemical properties of a substance. The trends of Hounsfield unit (HU) alterations following the changes in energy are different between the materials with high and low Zeff. The present study aimed to analyze the basic principles related to the attenuation coefficient of x-ray photons and a quantitative explanation is given for the mentioned behavior or trend.
Material and Methods: A mathematical expression was derived for the HU difference between two different scanner voltages. Attenuation coefficients of diverse substances, such as methanol, glycerol, acetic acid, the aqueous solution of potassium hydroxide, and water were calculated for x-ray scanners operating differently at distinct applied voltages and with diverse inherent or added filters.
Results: Findings of the current study demonstrated that the negative or positive outcome of HU(V1) - HU(V2) equation is not determined by the electron density of a substance. However, it is affected by the effective atomic number (Zeff) of the material and machine parameters specified by the source spectrum.
Conclusion: According to our results, the sign of HU difference [HU(V1) – HU(V2)] for the variable cases of V2 and V1 gives an indication of the effective atomic number of the material under study. The obtained results might be of diagnostic value in the DECT technique.
期刊介绍:
Iranian Journal of Medical Physics (IJMP) is the official scientific bimonthly publication of the Iranian Association of Medical Physicists. IJMP is an international and multidisciplinary journal, peer review, free of charge publication and open access. This journal devoted to publish Original Papers, Review Articles, Short Communications, Technical Notes, Editorial and Letters to the Editor in the field of “Medical Physics” involving both basic and clinical research. Submissions of manuscript from all countries are welcome and will be reviewed by at least two expert reviewers.