勒让德多项式与非线性振荡类点带电粒子

H. Sarafian
{"title":"勒让德多项式与非线性振荡类点带电粒子","authors":"H. Sarafian","doi":"10.4236/JEMAA.2017.911013","DOIUrl":null,"url":null,"abstract":"In this article we explore the kinematics of a point-like charged particle placed within the interior plane of a charged ring. Analytically we formulate the electric field of the ring along a representative diagonal. Graph of the field as a function of the distance from the center of the ring assists foreseeing oscillating movement of the charged particle. We formulate the equation of motion; this is a nonlinear differential equation. Applying Computer Algebra System (CAS), specifically Mathematica [1] we solve the equation numerically. Utilizing the solution we quantify the kinematic quantities of interest including oscillations period. Although the equation of motion is nonlinear its period is regulated. For better understanding we take an advantage of Mathematica animation features animating the nonlinear oscillations.","PeriodicalId":58231,"journal":{"name":"电磁分析与应用期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Legendre Polynomial and Nonlinear Oscillating Point-Like Charged Particle\",\"authors\":\"H. Sarafian\",\"doi\":\"10.4236/JEMAA.2017.911013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we explore the kinematics of a point-like charged particle placed within the interior plane of a charged ring. Analytically we formulate the electric field of the ring along a representative diagonal. Graph of the field as a function of the distance from the center of the ring assists foreseeing oscillating movement of the charged particle. We formulate the equation of motion; this is a nonlinear differential equation. Applying Computer Algebra System (CAS), specifically Mathematica [1] we solve the equation numerically. Utilizing the solution we quantify the kinematic quantities of interest including oscillations period. Although the equation of motion is nonlinear its period is regulated. For better understanding we take an advantage of Mathematica animation features animating the nonlinear oscillations.\",\"PeriodicalId\":58231,\"journal\":{\"name\":\"电磁分析与应用期刊(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"电磁分析与应用期刊(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/JEMAA.2017.911013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"电磁分析与应用期刊(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/JEMAA.2017.911013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们探讨了放置在一个带电环内平面的点状带电粒子的运动学。我们解析地表示了环沿一条有代表性的对角线的电场。场与环中心距离的函数图有助于预测带电粒子的振荡运动。我们给出运动方程;这是一个非线性微分方程。应用计算机代数系统(CAS),特别是Mathematica[1]对方程进行了数值求解。利用该解,我们量化了感兴趣的运动量,包括振荡周期。虽然运动方程是非线性的,但它的周期是有调节的。为了更好地理解,我们利用了Mathematica的动画功能,将非线性振荡动画化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Legendre Polynomial and Nonlinear Oscillating Point-Like Charged Particle
In this article we explore the kinematics of a point-like charged particle placed within the interior plane of a charged ring. Analytically we formulate the electric field of the ring along a representative diagonal. Graph of the field as a function of the distance from the center of the ring assists foreseeing oscillating movement of the charged particle. We formulate the equation of motion; this is a nonlinear differential equation. Applying Computer Algebra System (CAS), specifically Mathematica [1] we solve the equation numerically. Utilizing the solution we quantify the kinematic quantities of interest including oscillations period. Although the equation of motion is nonlinear its period is regulated. For better understanding we take an advantage of Mathematica animation features animating the nonlinear oscillations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
441
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信