{"title":"海洋系统的风险动力学:走向动态风险评估的生物启发框架","authors":"N. Ventikos, K. Louzis","doi":"10.1093/tse/tdac018","DOIUrl":null,"url":null,"abstract":"\n The development of innovative, complex marine systems, such as autonomous ship concepts, has led to risk-based approaches in design and operation that provide safety level quantification and continuous risk assessment. The existing approaches to dynamic risk assessment mainly aim at updating accident probabilities for specific risk scenarios, based on knowledge of system operation and failure, as well as on past accident and failure information. However, for innovative marine systems that include complex interactions, our ability to identify anything that might go wrong is very limited, which may lead to unidentified risks, and failure data may not be available. This paper presents the foundations of a framework for dynamic risk assessment, which is equally applicable to manned and autonomous ships and mainly relies on information about the safe operational envelope and real-time information regarding deviations from safety. Inspiration is drawn from how the biological immune system identifies the risk of infection in a dynamic environment. The objective is to show the feasibility and benefits of our approach for quantifying the operational risk of marine systems. This paper provides the conceptual basis for developing ship specific applications and describes a process for dynamic risk assessment that is methodologically based on artificial immune systems. To demonstrate the implementation of our framework, we described, an illustrative example that involves a ship in a grounding scenario. The results show that the bio-inspired assessment process and risk description can reflect the changes of the risk level of a marine system.","PeriodicalId":52804,"journal":{"name":"Transportation Safety and Environment","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Risk dynamics for marine systems: towards a bio-inspired framework for dynamic risk assessment\",\"authors\":\"N. Ventikos, K. Louzis\",\"doi\":\"10.1093/tse/tdac018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The development of innovative, complex marine systems, such as autonomous ship concepts, has led to risk-based approaches in design and operation that provide safety level quantification and continuous risk assessment. The existing approaches to dynamic risk assessment mainly aim at updating accident probabilities for specific risk scenarios, based on knowledge of system operation and failure, as well as on past accident and failure information. However, for innovative marine systems that include complex interactions, our ability to identify anything that might go wrong is very limited, which may lead to unidentified risks, and failure data may not be available. This paper presents the foundations of a framework for dynamic risk assessment, which is equally applicable to manned and autonomous ships and mainly relies on information about the safe operational envelope and real-time information regarding deviations from safety. Inspiration is drawn from how the biological immune system identifies the risk of infection in a dynamic environment. The objective is to show the feasibility and benefits of our approach for quantifying the operational risk of marine systems. This paper provides the conceptual basis for developing ship specific applications and describes a process for dynamic risk assessment that is methodologically based on artificial immune systems. To demonstrate the implementation of our framework, we described, an illustrative example that involves a ship in a grounding scenario. The results show that the bio-inspired assessment process and risk description can reflect the changes of the risk level of a marine system.\",\"PeriodicalId\":52804,\"journal\":{\"name\":\"Transportation Safety and Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Safety and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/tse/tdac018\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Safety and Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/tse/tdac018","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Risk dynamics for marine systems: towards a bio-inspired framework for dynamic risk assessment
The development of innovative, complex marine systems, such as autonomous ship concepts, has led to risk-based approaches in design and operation that provide safety level quantification and continuous risk assessment. The existing approaches to dynamic risk assessment mainly aim at updating accident probabilities for specific risk scenarios, based on knowledge of system operation and failure, as well as on past accident and failure information. However, for innovative marine systems that include complex interactions, our ability to identify anything that might go wrong is very limited, which may lead to unidentified risks, and failure data may not be available. This paper presents the foundations of a framework for dynamic risk assessment, which is equally applicable to manned and autonomous ships and mainly relies on information about the safe operational envelope and real-time information regarding deviations from safety. Inspiration is drawn from how the biological immune system identifies the risk of infection in a dynamic environment. The objective is to show the feasibility and benefits of our approach for quantifying the operational risk of marine systems. This paper provides the conceptual basis for developing ship specific applications and describes a process for dynamic risk assessment that is methodologically based on artificial immune systems. To demonstrate the implementation of our framework, we described, an illustrative example that involves a ship in a grounding scenario. The results show that the bio-inspired assessment process and risk description can reflect the changes of the risk level of a marine system.