Zhenlu Qiu, Cong Shi, Mei Zhang, L. Tang, Xueying Li, Tiejian Zhao, F. Shi
{"title":"华北近归化65年后油松人工林土壤细菌群落结构和多样性的变化","authors":"Zhenlu Qiu, Cong Shi, Mei Zhang, L. Tang, Xueying Li, Tiejian Zhao, F. Shi","doi":"10.1080/10549811.2022.2123359","DOIUrl":null,"url":null,"abstract":"ABSTRACT Our study investigates the effect of near-naturalization of plantations on soil physicochemical and bacterial features and the difference between soil layers in Baxianshan National Nature Reserve. Four stands were involved, including two forest types: near-naturalized and natural secondary forests, with the former classified into three stages. Soil physicochemical and bacterial properties were determined and analyzed. TC, TN contents and C/N ratio of the surface soil were higher than the corresponding lower layer. TC, TN contents decreased first and then increased with near-naturalization, lower than the natural secondary forests, while the C/N ratio was the opposite; total and endemic OTUs quantity was more in the surface layer than the lower and both increased with near-naturalization; the dominant phyla were Proteobacteria, Acidobacteria, Gemmatimonadetes, and verrucomicrobia, the relative abundance of Proteobacteria increased with near-naturalization while that of other dominant phyla decreased; the α-diversity increased on the whole during near-naturalization and was lower than the natural secondary forests except for Simpson and Shannon index; environmental factors significantly explained the bacterial α-diversity and community structure of natural secondary forests but not near-naturalized forests. This study helps fully understand the change characteristics and response mechanisms of soil bacterial community structure to the restoration of the plantation.","PeriodicalId":54313,"journal":{"name":"Journal of Sustainable Forestry","volume":"42 1","pages":"887 - 909"},"PeriodicalIF":1.2000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Changes in Soil Bacterial Community Structure and Diversity of Pinus Tabuliformis Plantation after 65 Years of near-naturalization in North China\",\"authors\":\"Zhenlu Qiu, Cong Shi, Mei Zhang, L. Tang, Xueying Li, Tiejian Zhao, F. Shi\",\"doi\":\"10.1080/10549811.2022.2123359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Our study investigates the effect of near-naturalization of plantations on soil physicochemical and bacterial features and the difference between soil layers in Baxianshan National Nature Reserve. Four stands were involved, including two forest types: near-naturalized and natural secondary forests, with the former classified into three stages. Soil physicochemical and bacterial properties were determined and analyzed. TC, TN contents and C/N ratio of the surface soil were higher than the corresponding lower layer. TC, TN contents decreased first and then increased with near-naturalization, lower than the natural secondary forests, while the C/N ratio was the opposite; total and endemic OTUs quantity was more in the surface layer than the lower and both increased with near-naturalization; the dominant phyla were Proteobacteria, Acidobacteria, Gemmatimonadetes, and verrucomicrobia, the relative abundance of Proteobacteria increased with near-naturalization while that of other dominant phyla decreased; the α-diversity increased on the whole during near-naturalization and was lower than the natural secondary forests except for Simpson and Shannon index; environmental factors significantly explained the bacterial α-diversity and community structure of natural secondary forests but not near-naturalized forests. This study helps fully understand the change characteristics and response mechanisms of soil bacterial community structure to the restoration of the plantation.\",\"PeriodicalId\":54313,\"journal\":{\"name\":\"Journal of Sustainable Forestry\",\"volume\":\"42 1\",\"pages\":\"887 - 909\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Forestry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10549811.2022.2123359\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Forestry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10549811.2022.2123359","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
Changes in Soil Bacterial Community Structure and Diversity of Pinus Tabuliformis Plantation after 65 Years of near-naturalization in North China
ABSTRACT Our study investigates the effect of near-naturalization of plantations on soil physicochemical and bacterial features and the difference between soil layers in Baxianshan National Nature Reserve. Four stands were involved, including two forest types: near-naturalized and natural secondary forests, with the former classified into three stages. Soil physicochemical and bacterial properties were determined and analyzed. TC, TN contents and C/N ratio of the surface soil were higher than the corresponding lower layer. TC, TN contents decreased first and then increased with near-naturalization, lower than the natural secondary forests, while the C/N ratio was the opposite; total and endemic OTUs quantity was more in the surface layer than the lower and both increased with near-naturalization; the dominant phyla were Proteobacteria, Acidobacteria, Gemmatimonadetes, and verrucomicrobia, the relative abundance of Proteobacteria increased with near-naturalization while that of other dominant phyla decreased; the α-diversity increased on the whole during near-naturalization and was lower than the natural secondary forests except for Simpson and Shannon index; environmental factors significantly explained the bacterial α-diversity and community structure of natural secondary forests but not near-naturalized forests. This study helps fully understand the change characteristics and response mechanisms of soil bacterial community structure to the restoration of the plantation.
期刊介绍:
Journal of Sustainable Forestry publishes peer-reviewed, original research on forest science. While the emphasis is on sustainable use of forest products and services, the journal covers a wide range of topics from the underlying biology and ecology of forests to the social, economic and policy aspects of forestry. Short communications and review papers that provide a clear theoretical, conceptual or methodological contribution to the existing literature are also included in the journal.
Common topics covered in the Journal of Sustainable Forestry include:
• Ecology, management, recreation, restoration and silvicultural systems of all forest types, including urban forests
• All aspects of forest biology, including ecophysiology, entomology, pathology, genetics, tree breeding, and biotechnology
• Wood properties, forest biomass, bioenergy, and carbon sequestration
• Simulation modeling, inventory, quantitative methods, and remote sensing
• Environmental pollution, fire and climate change impacts, and adaptation and mitigation in forests
• Forest engineering, economics, human dimensions, natural resource policy, and planning
Journal of Sustainable Forestry provides an international forum for dialogue between research scientists, forest managers, economists and policy and decision makers who share the common vision of the sustainable use of natural resources.