模板模型生成器的统计回顾:一个灵活的空间建模工具

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Aaron Osgood-Zimmerman, Jon Wakefield
{"title":"模板模型生成器的统计回顾:一个灵活的空间建模工具","authors":"Aaron Osgood-Zimmerman,&nbsp;Jon Wakefield","doi":"10.1111/insr.12534","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The integrated nested Laplace approximation (INLA) is a well-known and popular technique for spatial modelling with a user-friendly interface in the <span>R-INLA</span> package. Unfortunately, only a certain class of latent Gaussian models are amenable to fitting with INLA. In this paper, we review template model builder (<span>TMB</span>), an existing technique and software package which is well-suited to fitting complex spatio-temporal models. <span>TMB</span> is relatively unknown to the spatial statistics community, but it is a flexible random effects modelling tool which allows users to define customizable and complex mixed effects models through <span>C++</span> templates. After contrasting the methodology behind <span>TMB</span> with INLA, we provide a large-scale simulation study assessing and comparing <span>R-INLA</span> and <span>TMB</span> for continuous spatial models, fitted via the stochastic partial differential equations (SPDE) approximation. The results show that the predictive fields from both methods are comparable in most situations even though <span>TMB</span> estimates for fixed or random effects may have slightly larger bias than <span>R-INLA</span>. We also present a smaller discrete spatial simulation study, in which both approaches perform well. We conclude with a joint analysis of breast cancer incidence and mortality data implemented in <span>TMB</span> which requires a model which cannot be fit with <span>R-INLA</span>.</p>\n </div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Statistical Review of Template Model Builder: A Flexible Tool for Spatial Modelling\",\"authors\":\"Aaron Osgood-Zimmerman,&nbsp;Jon Wakefield\",\"doi\":\"10.1111/insr.12534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The integrated nested Laplace approximation (INLA) is a well-known and popular technique for spatial modelling with a user-friendly interface in the <span>R-INLA</span> package. Unfortunately, only a certain class of latent Gaussian models are amenable to fitting with INLA. In this paper, we review template model builder (<span>TMB</span>), an existing technique and software package which is well-suited to fitting complex spatio-temporal models. <span>TMB</span> is relatively unknown to the spatial statistics community, but it is a flexible random effects modelling tool which allows users to define customizable and complex mixed effects models through <span>C++</span> templates. After contrasting the methodology behind <span>TMB</span> with INLA, we provide a large-scale simulation study assessing and comparing <span>R-INLA</span> and <span>TMB</span> for continuous spatial models, fitted via the stochastic partial differential equations (SPDE) approximation. The results show that the predictive fields from both methods are comparable in most situations even though <span>TMB</span> estimates for fixed or random effects may have slightly larger bias than <span>R-INLA</span>. We also present a smaller discrete spatial simulation study, in which both approaches perform well. We conclude with a joint analysis of breast cancer incidence and mortality data implemented in <span>TMB</span> which requires a model which cannot be fit with <span>R-INLA</span>.</p>\\n </div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/insr.12534\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/insr.12534","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

集成嵌套拉普拉斯近似(INLA)是一种众所周知的、流行的空间建模技术,在R - INLA包中有一个用户友好的界面。不幸的是,只有一类潜在高斯模型适合用INLA拟合。本文综述了模板模型构建器(template model builder, TMB),这是一种适合于拟合复杂时空模型的现有技术和软件包。TMB对于空间统计社区来说相对陌生,但它是一个灵活的随机效果建模工具,允许用户通过c++模板定义可定制的复杂混合效果模型。在对比了TMB和INLA背后的方法之后,我们提供了一项大规模的模拟研究,通过随机偏微分方程(SPDE)近似拟合,评估和比较了R - INLA和TMB对连续空间模型的影响。结果表明,两种方法的预测场在大多数情况下是可比较的,尽管固定效应或随机效应的TMB估计可能比R - INLA偏差略大。我们还提出了一个较小的离散空间模拟研究,其中两种方法都表现良好。最后,我们对TMB患者的乳腺癌发病率和死亡率数据进行了联合分析,这需要一个无法用R - INLA拟合的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Statistical Review of Template Model Builder: A Flexible Tool for Spatial Modelling

The integrated nested Laplace approximation (INLA) is a well-known and popular technique for spatial modelling with a user-friendly interface in the R-INLA package. Unfortunately, only a certain class of latent Gaussian models are amenable to fitting with INLA. In this paper, we review template model builder (TMB), an existing technique and software package which is well-suited to fitting complex spatio-temporal models. TMB is relatively unknown to the spatial statistics community, but it is a flexible random effects modelling tool which allows users to define customizable and complex mixed effects models through C++ templates. After contrasting the methodology behind TMB with INLA, we provide a large-scale simulation study assessing and comparing R-INLA and TMB for continuous spatial models, fitted via the stochastic partial differential equations (SPDE) approximation. The results show that the predictive fields from both methods are comparable in most situations even though TMB estimates for fixed or random effects may have slightly larger bias than R-INLA. We also present a smaller discrete spatial simulation study, in which both approaches perform well. We conclude with a joint analysis of breast cancer incidence and mortality data implemented in TMB which requires a model which cannot be fit with R-INLA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信