0-分配格的零化子图

IF 0.6 Q3 MATHEMATICS
S. Bagheri, Mahtab Koohi Kerahroodi
{"title":"0-分配格的零化子图","authors":"S. Bagheri, Mahtab Koohi Kerahroodi","doi":"10.22108/TOC.2017.104919.1507","DOIUrl":null,"url":null,"abstract":"‎‎In this article‎, ‎for a lattice $mathcal L$‎, ‎we define and investigate‎ ‎the annihilator graph $mathfrak {ag} (mathcal L)$ of $mathcal L$ which contains the zero-divisor graph of $mathcal L$ as a subgraph‎. ‎Also‎, ‎for a 0-distributive lattice $mathcal L$‎, ‎we study some properties of this graph such as regularity‎, ‎connectedness‎, ‎the diameter‎, ‎the girth and its domination number‎. ‎Moreover‎, ‎for a distributive lattice $mathcal L$ with $Z(mathcal L)neqlbrace 0rbrace$‎, ‎we show that $mathfrak {ag} (mathcal L) = Gamma(mathcal L)$ if and only if $mathcal L$ has exactly two minimal prime ideals‎. ‎Among other things‎, ‎we consider the annihilator graph $mathfrak {ag} (mathcal L)$ of the lattice $mathcal L=(mathcal D(n),|)$ containing all positive divisors of a non-prime natural number $n$ and we compute some invariants such as the domination number‎, ‎the clique number and the chromatic number of this graph‎. ‎Also‎, ‎for this lattice we investigate some special cases in which $mathfrak {ag} (mathcal D(n))$ or $Gamma(mathcal D(n))$ are planar‎, ‎Eulerian or Hamiltonian.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"7 1","pages":"1-18"},"PeriodicalIF":0.6000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The annihilator graph of a 0-distributive lattice\",\"authors\":\"S. Bagheri, Mahtab Koohi Kerahroodi\",\"doi\":\"10.22108/TOC.2017.104919.1507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"‎‎In this article‎, ‎for a lattice $mathcal L$‎, ‎we define and investigate‎ ‎the annihilator graph $mathfrak {ag} (mathcal L)$ of $mathcal L$ which contains the zero-divisor graph of $mathcal L$ as a subgraph‎. ‎Also‎, ‎for a 0-distributive lattice $mathcal L$‎, ‎we study some properties of this graph such as regularity‎, ‎connectedness‎, ‎the diameter‎, ‎the girth and its domination number‎. ‎Moreover‎, ‎for a distributive lattice $mathcal L$ with $Z(mathcal L)neqlbrace 0rbrace$‎, ‎we show that $mathfrak {ag} (mathcal L) = Gamma(mathcal L)$ if and only if $mathcal L$ has exactly two minimal prime ideals‎. ‎Among other things‎, ‎we consider the annihilator graph $mathfrak {ag} (mathcal L)$ of the lattice $mathcal L=(mathcal D(n),|)$ containing all positive divisors of a non-prime natural number $n$ and we compute some invariants such as the domination number‎, ‎the clique number and the chromatic number of this graph‎. ‎Also‎, ‎for this lattice we investigate some special cases in which $mathfrak {ag} (mathcal D(n))$ or $Gamma(mathcal D(n))$ are planar‎, ‎Eulerian or Hamiltonian.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"7 1\",\"pages\":\"1-18\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2017.104919.1507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2017.104919.1507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,对于晶格$mathcal L$,我们定义并研究了$mathcal L$的湮灭子图$mathfrak {ag} (mathcal L)$,它包含$mathcal L$的零因子图作为子图。同时,对于一个0分配格,我们研究了图的正则性、连通性、直径、周长及其支配数等性质。此外,对于具有$Z(mathcal L)neqlbrace 0rbrace的分配格$mathcal L$,我们证明$mathfrak {ag} (mathcal L) = Gamma(mathcal L)$当且仅当$mathcal L$恰好有两个最小素数理想。除其他外,我们考虑晶格$mathcal L=(mathcal D(n),|)$的湮灭子图$mathfrak {ag} (mathcal L)$包含一个非素数自然数$n$的所有正因子,我们计算了一些不变量,如该图的支配数,团数和色数。同样,对于这个格,我们研究了一些特殊情况,其中$mathfrak {ag} (mathcal D(n))$或$Gamma(mathcal D(n))$是平面的、欧拉的或哈密顿的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The annihilator graph of a 0-distributive lattice
‎‎In this article‎, ‎for a lattice $mathcal L$‎, ‎we define and investigate‎ ‎the annihilator graph $mathfrak {ag} (mathcal L)$ of $mathcal L$ which contains the zero-divisor graph of $mathcal L$ as a subgraph‎. ‎Also‎, ‎for a 0-distributive lattice $mathcal L$‎, ‎we study some properties of this graph such as regularity‎, ‎connectedness‎, ‎the diameter‎, ‎the girth and its domination number‎. ‎Moreover‎, ‎for a distributive lattice $mathcal L$ with $Z(mathcal L)neqlbrace 0rbrace$‎, ‎we show that $mathfrak {ag} (mathcal L) = Gamma(mathcal L)$ if and only if $mathcal L$ has exactly two minimal prime ideals‎. ‎Among other things‎, ‎we consider the annihilator graph $mathfrak {ag} (mathcal L)$ of the lattice $mathcal L=(mathcal D(n),|)$ containing all positive divisors of a non-prime natural number $n$ and we compute some invariants such as the domination number‎, ‎the clique number and the chromatic number of this graph‎. ‎Also‎, ‎for this lattice we investigate some special cases in which $mathfrak {ag} (mathcal D(n))$ or $Gamma(mathcal D(n))$ are planar‎, ‎Eulerian or Hamiltonian.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信