超声波对蛋清泡沫性能的影响

Q3 Agricultural and Biological Sciences
D. Nagy, V. Zsom-Muha, C. Németh, J. Felföldi
{"title":"超声波对蛋清泡沫性能的影响","authors":"D. Nagy, V. Zsom-Muha, C. Németh, J. Felföldi","doi":"10.1556/446.2021.30001","DOIUrl":null,"url":null,"abstract":"The aim of this study was to determine the effect of ultrasound treatment on foaming properties of egg white. The samples were sonicated at 20/40 kHz and 180/300 W equipment power (3.7/6.9 W absorbed power) for 30, 45 and 60 minutes. Foam capacity had been increased by 25% due to sonication at 40 kHz and 6.9 W absorbed power for 60 minutes. This phenomenon may be caused by the homogenisation effect of ultrasound and protein exposure of hydrophobic groups that improve the adsorption of protein onto the air/water interfacial molecules. It is found that frequency and duration of the treatment have no significant impact on the changes in foam capacity, only the absorbed power. On the other hand, foam stability had been decreased during the ultrasonic treatment. We can assume that sonication decreases the potential difference between the dispersed particles and the dispersion medium and this may be the cause of the collapse of the foam structure due to ultrasound treatment. In this case frequency, treatment time, and the absorbed power had a significant effect on the stability.","PeriodicalId":20837,"journal":{"name":"Progress in Agricultural Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Sonication effect on foam properties of egg white\",\"authors\":\"D. Nagy, V. Zsom-Muha, C. Németh, J. Felföldi\",\"doi\":\"10.1556/446.2021.30001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study was to determine the effect of ultrasound treatment on foaming properties of egg white. The samples were sonicated at 20/40 kHz and 180/300 W equipment power (3.7/6.9 W absorbed power) for 30, 45 and 60 minutes. Foam capacity had been increased by 25% due to sonication at 40 kHz and 6.9 W absorbed power for 60 minutes. This phenomenon may be caused by the homogenisation effect of ultrasound and protein exposure of hydrophobic groups that improve the adsorption of protein onto the air/water interfacial molecules. It is found that frequency and duration of the treatment have no significant impact on the changes in foam capacity, only the absorbed power. On the other hand, foam stability had been decreased during the ultrasonic treatment. We can assume that sonication decreases the potential difference between the dispersed particles and the dispersion medium and this may be the cause of the collapse of the foam structure due to ultrasound treatment. In this case frequency, treatment time, and the absorbed power had a significant effect on the stability.\",\"PeriodicalId\":20837,\"journal\":{\"name\":\"Progress in Agricultural Engineering Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Agricultural Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/446.2021.30001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Agricultural Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/446.2021.30001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 4

摘要

本研究的目的是确定超声波处理对蛋清发泡性能的影响。将样品在20/40kHz和180/300W设备功率(3.7/6.9W吸收功率)下超声处理30、45和60分钟。由于在40kHz和6.9W的吸收功率下超声处理60分钟,泡沫容量增加了25%。这种现象可能是由超声波的均化作用和疏水基团的蛋白质暴露引起的,疏水基团改善了蛋白质在空气/水界面分子上的吸附。研究发现,处理的频率和持续时间对泡沫容量的变化没有显著影响,只有对吸收功率的影响。另一方面,在超声处理过程中,泡沫的稳定性降低。我们可以假设超声处理降低了分散颗粒和分散介质之间的电势差,这可能是由于超声处理导致泡沫结构坍塌的原因。在这种情况下,频率、处理时间和吸收功率对稳定性有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sonication effect on foam properties of egg white
The aim of this study was to determine the effect of ultrasound treatment on foaming properties of egg white. The samples were sonicated at 20/40 kHz and 180/300 W equipment power (3.7/6.9 W absorbed power) for 30, 45 and 60 minutes. Foam capacity had been increased by 25% due to sonication at 40 kHz and 6.9 W absorbed power for 60 minutes. This phenomenon may be caused by the homogenisation effect of ultrasound and protein exposure of hydrophobic groups that improve the adsorption of protein onto the air/water interfacial molecules. It is found that frequency and duration of the treatment have no significant impact on the changes in foam capacity, only the absorbed power. On the other hand, foam stability had been decreased during the ultrasonic treatment. We can assume that sonication decreases the potential difference between the dispersed particles and the dispersion medium and this may be the cause of the collapse of the foam structure due to ultrasound treatment. In this case frequency, treatment time, and the absorbed power had a significant effect on the stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Agricultural Engineering Sciences
Progress in Agricultural Engineering Sciences Engineering-Industrial and Manufacturing Engineering
CiteScore
1.80
自引率
0.00%
发文量
6
期刊介绍: The Journal publishes original papers, review papers and preliminary communications in the field of agricultural, environmental and process engineering. The main purpose is to show new scientific results, new developments and procedures with special respect to the engineering of crop production and animal husbandry, soil and water management, precision agriculture, information technology in agriculture, advancements in instrumentation and automation, technical and safety aspects of environmental and food engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信