Chunhua Li, Y. Nishii, Yuji Sagawa, Hideaki Sunagawa
{"title":"一维三次非线性Schrödinger系统的大时间渐近性,2","authors":"Chunhua Li, Y. Nishii, Yuji Sagawa, Hideaki Sunagawa","doi":"10.1619/fesi.64.361","DOIUrl":null,"url":null,"abstract":"This is a sequel to the paper \"Large time asymptotics for a cubic nonlinear Schrodinger system in one space dimension\" by the same authors. We continue to study the Cauchy problem for the two-component system of cubic nonlinear Schrodinger equations in one space dimension. We provide criteria for large time decay or non-decay in $L^2$ of the small amplitude solutions in terms of the Fourier transforms of the initial data.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Large Time Asymptotics for a Cubic Nonlinear Schrödinger\\n System in One Space Dimension, II\",\"authors\":\"Chunhua Li, Y. Nishii, Yuji Sagawa, Hideaki Sunagawa\",\"doi\":\"10.1619/fesi.64.361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is a sequel to the paper \\\"Large time asymptotics for a cubic nonlinear Schrodinger system in one space dimension\\\" by the same authors. We continue to study the Cauchy problem for the two-component system of cubic nonlinear Schrodinger equations in one space dimension. We provide criteria for large time decay or non-decay in $L^2$ of the small amplitude solutions in terms of the Fourier transforms of the initial data.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1619/fesi.64.361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1619/fesi.64.361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Large Time Asymptotics for a Cubic Nonlinear Schrödinger
System in One Space Dimension, II
This is a sequel to the paper "Large time asymptotics for a cubic nonlinear Schrodinger system in one space dimension" by the same authors. We continue to study the Cauchy problem for the two-component system of cubic nonlinear Schrodinger equations in one space dimension. We provide criteria for large time decay or non-decay in $L^2$ of the small amplitude solutions in terms of the Fourier transforms of the initial data.