谱负lsamvy过程的q尺度函数

Pub Date : 2021-09-20 DOI:10.1017/apr.2022.10
Anita Behme, David Oechsler, R. Schilling
{"title":"谱负lsamvy过程的q尺度函数","authors":"Anita Behme, David Oechsler, R. Schilling","doi":"10.1017/apr.2022.10","DOIUrl":null,"url":null,"abstract":"Abstract We obtain series expansions of the q-scale functions of arbitrary spectrally negative Lévy processes, including processes with infinite jump activity, and use these to derive various new examples of explicit q-scale functions. Moreover, we study smoothness properties of the q-scale functions of spectrally negative Lévy processes with infinite jump activity. This complements previous results of Chan et al. (Prob. Theory Relat. Fields 150, 2011) for spectrally negative Lévy processes with Gaussian component or bounded variation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On q-scale functions of spectrally negative Lévy processes\",\"authors\":\"Anita Behme, David Oechsler, R. Schilling\",\"doi\":\"10.1017/apr.2022.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We obtain series expansions of the q-scale functions of arbitrary spectrally negative Lévy processes, including processes with infinite jump activity, and use these to derive various new examples of explicit q-scale functions. Moreover, we study smoothness properties of the q-scale functions of spectrally negative Lévy processes with infinite jump activity. This complements previous results of Chan et al. (Prob. Theory Relat. Fields 150, 2011) for spectrally negative Lévy processes with Gaussian component or bounded variation.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/apr.2022.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2022.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要我们得到了任意谱负Lévy过程(包括具有无限跳跃活动的过程)的q标度函数的级数展开式,并用这些级数展开式导出了显式q标度功能的各种新例子。此外,我们还研究了具有无穷跳跃活动的谱负Lévy过程的q尺度函数的光滑性。这补充了Chan等人(Prob.Theory Relat.Fields 1502011)关于具有高斯分量或有界变化的谱负Lévy过程的先前结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On q-scale functions of spectrally negative Lévy processes
Abstract We obtain series expansions of the q-scale functions of arbitrary spectrally negative Lévy processes, including processes with infinite jump activity, and use these to derive various new examples of explicit q-scale functions. Moreover, we study smoothness properties of the q-scale functions of spectrally negative Lévy processes with infinite jump activity. This complements previous results of Chan et al. (Prob. Theory Relat. Fields 150, 2011) for spectrally negative Lévy processes with Gaussian component or bounded variation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信