一般非保守非对称机械系统的动力学与灵敏度分析

Q3 Engineering
M. Zmindak
{"title":"一般非保守非对称机械系统的动力学与灵敏度分析","authors":"M. Zmindak","doi":"10.2478/scjme-2018-0021","DOIUrl":null,"url":null,"abstract":"Abstract In this paper the concept of generalized form of proportional damping is proposed. Classical modal analysis of non-conservative continua is extended to multi DOF linear dynamic systems with asymmetric matrices. Mode orthogonality relationships have been generalized to non-conservative systems. Several discretization methods of continua are presented. Finally, an expression for derivatives of eigenvalues and eigenvectors of non-conservative system is presented. Examples are provided to illustrate the proposed methods.","PeriodicalId":35968,"journal":{"name":"Strojnicky Casopis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Dynamic and Sensitivity Analysis General Non-Conservative Asymmetric Mechanical Systems\",\"authors\":\"M. Zmindak\",\"doi\":\"10.2478/scjme-2018-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper the concept of generalized form of proportional damping is proposed. Classical modal analysis of non-conservative continua is extended to multi DOF linear dynamic systems with asymmetric matrices. Mode orthogonality relationships have been generalized to non-conservative systems. Several discretization methods of continua are presented. Finally, an expression for derivatives of eigenvalues and eigenvectors of non-conservative system is presented. Examples are provided to illustrate the proposed methods.\",\"PeriodicalId\":35968,\"journal\":{\"name\":\"Strojnicky Casopis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strojnicky Casopis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/scjme-2018-0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strojnicky Casopis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/scjme-2018-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5

摘要

摘要本文提出了比例阻尼广义形式的概念。将非保守连续体的经典模态分析推广到具有非对称矩阵的多自由度线性动力系统。模式正交性关系已被推广到非保守系统。介绍了连续算子的几种离散化方法。最后,给出了非保守系统特征值和特征向量导数的表达式。举例说明了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic and Sensitivity Analysis General Non-Conservative Asymmetric Mechanical Systems
Abstract In this paper the concept of generalized form of proportional damping is proposed. Classical modal analysis of non-conservative continua is extended to multi DOF linear dynamic systems with asymmetric matrices. Mode orthogonality relationships have been generalized to non-conservative systems. Several discretization methods of continua are presented. Finally, an expression for derivatives of eigenvalues and eigenvectors of non-conservative system is presented. Examples are provided to illustrate the proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Strojnicky Casopis
Strojnicky Casopis Engineering-Mechanical Engineering
CiteScore
2.00
自引率
0.00%
发文量
33
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信