基于集成学习的X射线图像无损蚕蛹性别分类

IF 8.2 Q1 AGRICULTURE, MULTIDISCIPLINARY
Sania Thomas, Jyothi Thomas
{"title":"基于集成学习的X射线图像无损蚕蛹性别分类","authors":"Sania Thomas,&nbsp;Jyothi Thomas","doi":"10.1016/j.aiia.2022.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>Sericulture is the process of cultivating silkworms for the production of silk. High-quality production of silk without mixing with low quality is a great challenge faced in the silk production centers. One of the possibilities to overcome this issue is by separating male and female cocoons before extracting silk fibers from the cocoons as male cocoon silk fibers are finer than females. This study proposes a method for the classification of male and female cocoons with the help of X-ray images without destructing the cocoon. The study used popular single hybrid varieties FC1 and FC2 mulberry silkworm cocoons. The shape features of the pupa are considered for the classification process and were obtained without cutting the cocoon. A novel point interpolation method is used for the computation of the width and height of the cocoon. Different dimensionality reduction methods are employed to enhance the performance of the model. The preprocessed features are fed to the powerful ensemble learning method AdaBoost and used logistic regression as the base learner. This model attained a mean accuracy of 96.3% for FC1 and FC2 in cross-validation and 95.3% in FC1 and 95.1% in FC2 for external validation.</p></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"6 ","pages":"Pages 100-110"},"PeriodicalIF":8.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589721722000083/pdfft?md5=d0cead76b9f690e47295d42b87ef7a7f&pid=1-s2.0-S2589721722000083-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Non-destructive silkworm pupa gender classification with X-ray images using ensemble learning\",\"authors\":\"Sania Thomas,&nbsp;Jyothi Thomas\",\"doi\":\"10.1016/j.aiia.2022.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sericulture is the process of cultivating silkworms for the production of silk. High-quality production of silk without mixing with low quality is a great challenge faced in the silk production centers. One of the possibilities to overcome this issue is by separating male and female cocoons before extracting silk fibers from the cocoons as male cocoon silk fibers are finer than females. This study proposes a method for the classification of male and female cocoons with the help of X-ray images without destructing the cocoon. The study used popular single hybrid varieties FC1 and FC2 mulberry silkworm cocoons. The shape features of the pupa are considered for the classification process and were obtained without cutting the cocoon. A novel point interpolation method is used for the computation of the width and height of the cocoon. Different dimensionality reduction methods are employed to enhance the performance of the model. The preprocessed features are fed to the powerful ensemble learning method AdaBoost and used logistic regression as the base learner. This model attained a mean accuracy of 96.3% for FC1 and FC2 in cross-validation and 95.3% in FC1 and 95.1% in FC2 for external validation.</p></div>\",\"PeriodicalId\":52814,\"journal\":{\"name\":\"Artificial Intelligence in Agriculture\",\"volume\":\"6 \",\"pages\":\"Pages 100-110\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589721722000083/pdfft?md5=d0cead76b9f690e47295d42b87ef7a7f&pid=1-s2.0-S2589721722000083-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Agriculture\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589721722000083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721722000083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

养蚕是指为生产蚕丝而饲养蚕的过程。在丝绸生产中心,如何生产出高质量的丝绸而不掺杂低质量的丝绸是一个巨大的挑战。解决这一问题的方法之一是先将雌雄茧分开,然后再从茧中提取丝纤维,因为雄茧的丝纤维比雌茧细。本研究提出了一种在不破坏茧的情况下,利用x射线图像对雌雄茧进行分类的方法。本研究以流行的单杂交品种FC1和FC2桑蚕蚕茧为研究对象。蛹的形状特征被考虑为分类过程,并在不切割茧的情况下获得。采用一种新颖的点插值方法计算茧的宽度和高度。采用不同的降维方法来提高模型的性能。将预处理后的特征输入到强大的集成学习方法AdaBoost中,并使用逻辑回归作为基础学习器。该模型在交叉验证中FC1和FC2的平均准确率为96.3%,在外部验证中FC1和FC2的平均准确率为95.3%和95.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-destructive silkworm pupa gender classification with X-ray images using ensemble learning

Sericulture is the process of cultivating silkworms for the production of silk. High-quality production of silk without mixing with low quality is a great challenge faced in the silk production centers. One of the possibilities to overcome this issue is by separating male and female cocoons before extracting silk fibers from the cocoons as male cocoon silk fibers are finer than females. This study proposes a method for the classification of male and female cocoons with the help of X-ray images without destructing the cocoon. The study used popular single hybrid varieties FC1 and FC2 mulberry silkworm cocoons. The shape features of the pupa are considered for the classification process and were obtained without cutting the cocoon. A novel point interpolation method is used for the computation of the width and height of the cocoon. Different dimensionality reduction methods are employed to enhance the performance of the model. The preprocessed features are fed to the powerful ensemble learning method AdaBoost and used logistic regression as the base learner. This model attained a mean accuracy of 96.3% for FC1 and FC2 in cross-validation and 95.3% in FC1 and 95.1% in FC2 for external validation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence in Agriculture
Artificial Intelligence in Agriculture Engineering-Engineering (miscellaneous)
CiteScore
21.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信