具有对折持久同调的持久同调表示的快速计算

IF 1.7 Q2 MATHEMATICS, APPLIED
Matija vCufar, Žiga Virk
{"title":"具有对折持久同调的持久同调表示的快速计算","authors":"Matija vCufar, Žiga Virk","doi":"10.3934/fods.2023006","DOIUrl":null,"url":null,"abstract":"Persistent homology is typically computed through persistent cohomology. While this generally improves the running time significantly, it does not facilitate extraction of homology representatives. The mentioned representatives are geometric manifestations of the corresponding holes and often carry desirable information. We propose a new method of extraction of persistent homology representatives using cohomology. In a nutshell, we first compute persistent cohomology and use the obtained information to significantly improve the running time of the direct persistent homology computations. This algorithm applied to Rips filtrations generally computes persistent homology representatives much faster than the standard methods.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2021-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Fast computation of persistent homology representatives with involuted persistent homology\",\"authors\":\"Matija vCufar, Žiga Virk\",\"doi\":\"10.3934/fods.2023006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Persistent homology is typically computed through persistent cohomology. While this generally improves the running time significantly, it does not facilitate extraction of homology representatives. The mentioned representatives are geometric manifestations of the corresponding holes and often carry desirable information. We propose a new method of extraction of persistent homology representatives using cohomology. In a nutshell, we first compute persistent cohomology and use the obtained information to significantly improve the running time of the direct persistent homology computations. This algorithm applied to Rips filtrations generally computes persistent homology representatives much faster than the standard methods.\",\"PeriodicalId\":73054,\"journal\":{\"name\":\"Foundations of data science (Springfield, Mo.)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of data science (Springfield, Mo.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/fods.2023006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/fods.2023006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 8

摘要

持久同调通常通过持久上同调来计算。虽然这通常会显著改善运行时间,但它不利于提取同源表示。所述代表物是相应孔的几何表现形式,并且通常携带所需的信息。提出了一种利用上同调提取持久同调代表的新方法。简而言之,我们首先计算持久上同调,并使用获得的信息来显著提高直接持久同调计算的运行时间。该算法应用于rip过滤,通常比标准方法更快地计算持久同源表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast computation of persistent homology representatives with involuted persistent homology
Persistent homology is typically computed through persistent cohomology. While this generally improves the running time significantly, it does not facilitate extraction of homology representatives. The mentioned representatives are geometric manifestations of the corresponding holes and often carry desirable information. We propose a new method of extraction of persistent homology representatives using cohomology. In a nutshell, we first compute persistent cohomology and use the obtained information to significantly improve the running time of the direct persistent homology computations. This algorithm applied to Rips filtrations generally computes persistent homology representatives much faster than the standard methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信