{"title":"一种利用EUV图像重建等离子体He+密度的新反演方法","authors":"Ya Huang, Lei Dai, Chi Wang, RongLan Xu, Liang Li","doi":"10.26464/epp2021020","DOIUrl":null,"url":null,"abstract":"<p>The Computer Tomography (CT) method is used for remote sensing the Earth's plasmasphere. One challenge for image reconstruction is insufficient projection data, mainly caused by limited projection angles. In this study, we apply the Algebraic Reconstruction Technique (ART) and the minimization of the image Total Variation (TV) method, with a combination of priori knowledge of north-south symmetry, to reconstruct plasmaspheric He<sup>+</sup> density from simulated EUV images. The results demonstrate that incorporating priori assumption can be particularly useful when the projection data is insufficient. This method has good performance even with a projection angle of less than 150 degrees. The method of our study is expected to have applications in the Soft X-ray Imager (SXI) reconstruction for the Solar wind-Magnetosphere-Ionosphere Link Explorer (SMILE) mission.</p>","PeriodicalId":45246,"journal":{"name":"Earth and Planetary Physics","volume":"5 2","pages":"218-222"},"PeriodicalIF":2.9000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.26464/epp2021020","citationCount":"3","resultStr":"{\"title\":\"A new inversion method for reconstruction of plasmaspheric He+ density from EUV images\",\"authors\":\"Ya Huang, Lei Dai, Chi Wang, RongLan Xu, Liang Li\",\"doi\":\"10.26464/epp2021020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Computer Tomography (CT) method is used for remote sensing the Earth's plasmasphere. One challenge for image reconstruction is insufficient projection data, mainly caused by limited projection angles. In this study, we apply the Algebraic Reconstruction Technique (ART) and the minimization of the image Total Variation (TV) method, with a combination of priori knowledge of north-south symmetry, to reconstruct plasmaspheric He<sup>+</sup> density from simulated EUV images. The results demonstrate that incorporating priori assumption can be particularly useful when the projection data is insufficient. This method has good performance even with a projection angle of less than 150 degrees. The method of our study is expected to have applications in the Soft X-ray Imager (SXI) reconstruction for the Solar wind-Magnetosphere-Ionosphere Link Explorer (SMILE) mission.</p>\",\"PeriodicalId\":45246,\"journal\":{\"name\":\"Earth and Planetary Physics\",\"volume\":\"5 2\",\"pages\":\"218-222\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2021-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.26464/epp2021020\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Planetary Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.26464/epp2021020\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.26464/epp2021020","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new inversion method for reconstruction of plasmaspheric He+ density from EUV images
The Computer Tomography (CT) method is used for remote sensing the Earth's plasmasphere. One challenge for image reconstruction is insufficient projection data, mainly caused by limited projection angles. In this study, we apply the Algebraic Reconstruction Technique (ART) and the minimization of the image Total Variation (TV) method, with a combination of priori knowledge of north-south symmetry, to reconstruct plasmaspheric He+ density from simulated EUV images. The results demonstrate that incorporating priori assumption can be particularly useful when the projection data is insufficient. This method has good performance even with a projection angle of less than 150 degrees. The method of our study is expected to have applications in the Soft X-ray Imager (SXI) reconstruction for the Solar wind-Magnetosphere-Ionosphere Link Explorer (SMILE) mission.