镜像对有理椭圆曲面的收敛性

IF 1.1 Q1 MATHEMATICS
L. J. Barrott
{"title":"镜像对有理椭圆曲面的收敛性","authors":"L. J. Barrott","doi":"10.1112/tlm3.12028","DOIUrl":null,"url":null,"abstract":"The construction introduced by Gross, Hacking and Keel in (Several Complex Variables (Springer, New York, NY, 1976))allows one to construct a formal mirror family to a pair (S,D) where S is a smooth rational projective surface and D a certain type of Weil divisor supporting an ample or anti‐ample class. In that paper, they proved two convergence results when the intersection matrix of D is not negative semi‐definite and when the matrix is negative definite. In the original version of that paper, they claimed that if the intersection matrix were negative semi‐definite, then family extends over an analytic neighbourhood of the origin but gave an incorrect proof. In this paper, we correct this error. We reduce the construction of the mirror to such a surface to calculating certain log Gromov–Witten invariants. We then relate these invariants to the invariants of a new space where we can find explicit formulae for the invariants. From this we deduce analytic convergence of the mirror family, at least when the original surface has an I4 fibre.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":"8 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2018-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Convergence of the mirror to a rational elliptic surface\",\"authors\":\"L. J. Barrott\",\"doi\":\"10.1112/tlm3.12028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The construction introduced by Gross, Hacking and Keel in (Several Complex Variables (Springer, New York, NY, 1976))allows one to construct a formal mirror family to a pair (S,D) where S is a smooth rational projective surface and D a certain type of Weil divisor supporting an ample or anti‐ample class. In that paper, they proved two convergence results when the intersection matrix of D is not negative semi‐definite and when the matrix is negative definite. In the original version of that paper, they claimed that if the intersection matrix were negative semi‐definite, then family extends over an analytic neighbourhood of the origin but gave an incorrect proof. In this paper, we correct this error. We reduce the construction of the mirror to such a surface to calculating certain log Gromov–Witten invariants. We then relate these invariants to the invariants of a new space where we can find explicit formulae for the invariants. From this we deduce analytic convergence of the mirror family, at least when the original surface has an I4 fibre.\",\"PeriodicalId\":41208,\"journal\":{\"name\":\"Transactions of the London Mathematical Society\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the London Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/tlm3.12028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

Gross、Hacking和Keel在(《若干复变量》(Springer,New York,NY,1976))中引入的构造允许构造一对(S,D)的形式镜像族,其中S是光滑有理投影曲面,D是支持充分或反充分类的某种类型的Weil除数。在这篇文章中,他们证明了当D的交矩阵不是负半定和当矩阵是负定时的两个收敛结果。在该论文的原始版本中,他们声称,如果交集矩阵是负半定的,那么族在原点的分析邻域上扩展,但给出了不正确的证明。在本文中,我们纠正了这个错误。我们将反射镜的构造简化为计算某些log Gromov–Witten不变量。然后,我们将这些不变量与新空间的不变量联系起来,在那里我们可以找到不变量的显式公式。由此我们推导出镜像族的解析收敛性,至少当原始表面具有I4纤维时是这样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence of the mirror to a rational elliptic surface
The construction introduced by Gross, Hacking and Keel in (Several Complex Variables (Springer, New York, NY, 1976))allows one to construct a formal mirror family to a pair (S,D) where S is a smooth rational projective surface and D a certain type of Weil divisor supporting an ample or anti‐ample class. In that paper, they proved two convergence results when the intersection matrix of D is not negative semi‐definite and when the matrix is negative definite. In the original version of that paper, they claimed that if the intersection matrix were negative semi‐definite, then family extends over an analytic neighbourhood of the origin but gave an incorrect proof. In this paper, we correct this error. We reduce the construction of the mirror to such a surface to calculating certain log Gromov–Witten invariants. We then relate these invariants to the invariants of a new space where we can find explicit formulae for the invariants. From this we deduce analytic convergence of the mirror family, at least when the original surface has an I4 fibre.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信