{"title":"弱条件下随机微分系统的Jurdjevic-Quinn定理","authors":"P. Florchinger","doi":"10.2478/candc-2022-0002","DOIUrl":null,"url":null,"abstract":"Abstract The purpose of this paper is to provide sufficient conditions for the stabilizability of weak solutions of stochastic differential systems when both the drift and diffusion are affine in the control. This result extends the well–known theorem of Jurdjevic– Quinn (Jurdjevic and Quinn, 1978) to stochastic differential systems under weaker conditions on the system coefficients than those assumed in Florchinger (2002).","PeriodicalId":55209,"journal":{"name":"Control and Cybernetics","volume":"51 1","pages":"21 - 29"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Jurdjevic-Quinn theorem for stochastic differential systems under weak conditions\",\"authors\":\"P. Florchinger\",\"doi\":\"10.2478/candc-2022-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The purpose of this paper is to provide sufficient conditions for the stabilizability of weak solutions of stochastic differential systems when both the drift and diffusion are affine in the control. This result extends the well–known theorem of Jurdjevic– Quinn (Jurdjevic and Quinn, 1978) to stochastic differential systems under weaker conditions on the system coefficients than those assumed in Florchinger (2002).\",\"PeriodicalId\":55209,\"journal\":{\"name\":\"Control and Cybernetics\",\"volume\":\"51 1\",\"pages\":\"21 - 29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/candc-2022-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/candc-2022-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
A Jurdjevic-Quinn theorem for stochastic differential systems under weak conditions
Abstract The purpose of this paper is to provide sufficient conditions for the stabilizability of weak solutions of stochastic differential systems when both the drift and diffusion are affine in the control. This result extends the well–known theorem of Jurdjevic– Quinn (Jurdjevic and Quinn, 1978) to stochastic differential systems under weaker conditions on the system coefficients than those assumed in Florchinger (2002).
期刊介绍:
The field of interest covers general concepts, theories, methods and techniques associated with analysis, modelling, control and management in various systems (e.g. technological, economic, ecological, social). The journal is particularly interested in results in the following areas of research:
Systems and control theory:
general systems theory,
optimal cotrol,
optimization theory,
data analysis, learning, artificial intelligence,
modelling & identification,
game theory, multicriteria optimisation, decision and negotiation methods,
soft approaches: stochastic and fuzzy methods,
computer science,