木塑复合材料用木粉和木屑颗粒的生命周期评价

G. Pokhrel, H. Gu, D. Gardner, S. O'Neill
{"title":"木塑复合材料用木粉和木屑颗粒的生命周期评价","authors":"G. Pokhrel, H. Gu, D. Gardner, S. O'Neill","doi":"10.21926/rpm.2201003","DOIUrl":null,"url":null,"abstract":"This study is expanding the previous studies that were focused on the material properties and transportation costs of the two alternative feedstocks for manufacturing wood-plastic composites (WPCs): wood flour and pellets. Besides the material properties and cost analysis, life-cycle assessment (LCA) is equally important to assess the environmental impacts of these two alternative wood feedstocks to manufacture WPCs and gain the knowledge of influences from the manufacturing and transportation processes. The main goal of this study was to compare the environmental impacts from the production and transportation of wood flour and pellets utilized in WPC manufacture. The environmental impacts on air, water, soil and human health, as well as the cumulated energy consumption for one tonne and one truckload of the two wood feedstocks were compared. The case-study was based on a commercial wood pellet manufacturer in the state of Maine (ME). The cradle-to-gate approach was considered including the processing of mill residues, manufacturing of the two feedstocks and transporting them to commercial WPC manufacturers. LCA analysis showed that transportation of both feedstocks had the highest impact on the environment as opposed to the inputs associated with production. The global warming potential (GWP) from one tonne production and shipment of wood flour was higher by 8% compared to the pellets. One tonne production and shipment of wood pellets appears more environmentally friendly. Normalization results of one truck load of wood flour (22 tonnes) and pellets (30 tonnes) showed similar environmental impacts. Based on this study, from an environmental perspective, it is inferred that besides use as bio-fuels, wood pellets could be a better alternative feedstock for the manufacture of WPCs.","PeriodicalId":87352,"journal":{"name":"Recent progress in materials","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Life Cycle Assessment (LCA) of Wood Flour and Pellets for Manufacturing Wood-Plastic Composites (WPCs)\",\"authors\":\"G. Pokhrel, H. Gu, D. Gardner, S. O'Neill\",\"doi\":\"10.21926/rpm.2201003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study is expanding the previous studies that were focused on the material properties and transportation costs of the two alternative feedstocks for manufacturing wood-plastic composites (WPCs): wood flour and pellets. Besides the material properties and cost analysis, life-cycle assessment (LCA) is equally important to assess the environmental impacts of these two alternative wood feedstocks to manufacture WPCs and gain the knowledge of influences from the manufacturing and transportation processes. The main goal of this study was to compare the environmental impacts from the production and transportation of wood flour and pellets utilized in WPC manufacture. The environmental impacts on air, water, soil and human health, as well as the cumulated energy consumption for one tonne and one truckload of the two wood feedstocks were compared. The case-study was based on a commercial wood pellet manufacturer in the state of Maine (ME). The cradle-to-gate approach was considered including the processing of mill residues, manufacturing of the two feedstocks and transporting them to commercial WPC manufacturers. LCA analysis showed that transportation of both feedstocks had the highest impact on the environment as opposed to the inputs associated with production. The global warming potential (GWP) from one tonne production and shipment of wood flour was higher by 8% compared to the pellets. One tonne production and shipment of wood pellets appears more environmentally friendly. Normalization results of one truck load of wood flour (22 tonnes) and pellets (30 tonnes) showed similar environmental impacts. Based on this study, from an environmental perspective, it is inferred that besides use as bio-fuels, wood pellets could be a better alternative feedstock for the manufacture of WPCs.\",\"PeriodicalId\":87352,\"journal\":{\"name\":\"Recent progress in materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent progress in materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/rpm.2201003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent progress in materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/rpm.2201003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这项研究扩展了以前的研究,这些研究侧重于制造木塑复合材料的两种替代原料的材料特性和运输成本:木粉和颗粒。除了材料特性和成本分析外,生命周期评估(LCA)对于评估这两种替代木材原料对生产WPC的环境影响以及了解制造和运输过程的影响同样重要。本研究的主要目的是比较木塑复合材料制造中使用的木粉和颗粒的生产和运输对环境的影响。比较了两种木材原料对空气、水、土壤和人类健康的环境影响,以及一吨和一卡车的累计能耗。案例研究基于缅因州的一家商业木屑颗粒制造商。考虑了从摇篮到大门的方法,包括加工磨机残渣、制造两种原料并将其运输给商业WPC制造商。LCA分析表明,与生产相关的投入相比,两种原料的运输对环境的影响最大。与颗粒相比,一吨木粉的生产和运输产生的全球变暖潜力(GWP)高出8%。每吨木屑颗粒的生产和运输似乎更环保。一卡车木粉(22吨)和颗粒(30吨)的归一化结果显示出类似的环境影响。基于这项研究,从环境角度来看,可以推断,除了用作生物燃料外,木屑颗粒可能是制造WPC的更好的替代原料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Life Cycle Assessment (LCA) of Wood Flour and Pellets for Manufacturing Wood-Plastic Composites (WPCs)
This study is expanding the previous studies that were focused on the material properties and transportation costs of the two alternative feedstocks for manufacturing wood-plastic composites (WPCs): wood flour and pellets. Besides the material properties and cost analysis, life-cycle assessment (LCA) is equally important to assess the environmental impacts of these two alternative wood feedstocks to manufacture WPCs and gain the knowledge of influences from the manufacturing and transportation processes. The main goal of this study was to compare the environmental impacts from the production and transportation of wood flour and pellets utilized in WPC manufacture. The environmental impacts on air, water, soil and human health, as well as the cumulated energy consumption for one tonne and one truckload of the two wood feedstocks were compared. The case-study was based on a commercial wood pellet manufacturer in the state of Maine (ME). The cradle-to-gate approach was considered including the processing of mill residues, manufacturing of the two feedstocks and transporting them to commercial WPC manufacturers. LCA analysis showed that transportation of both feedstocks had the highest impact on the environment as opposed to the inputs associated with production. The global warming potential (GWP) from one tonne production and shipment of wood flour was higher by 8% compared to the pellets. One tonne production and shipment of wood pellets appears more environmentally friendly. Normalization results of one truck load of wood flour (22 tonnes) and pellets (30 tonnes) showed similar environmental impacts. Based on this study, from an environmental perspective, it is inferred that besides use as bio-fuels, wood pellets could be a better alternative feedstock for the manufacture of WPCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信