{"title":"三丁基锡对斑马鱼胚胎的毒理学影响","authors":"Kumudu Bandara R.V., Pathmalal Manage M.","doi":"10.32526/ennrj/20/202200001","DOIUrl":null,"url":null,"abstract":"Tributyltin (TBT) is known as an endocrine-disrupting chemical abundant in the aquatic environment. In the present study, zebrafish fish embryos were used to observe the chronic toxicity of TBT. Fish embryo toxicity analysis was carried out for different TBT concentrations (100, 50, 25, 12.5, 6.2, and 3.1 ng/L) and fertilized eggs were used to test each concentration effect. Fertilized eggs in 24-well plates (20 eggs in each well) were incubated at 26°C for four days and embryo coagulation, heartbeat of the embryo and mortality lethal endpoints (LC50 values) were recorded after 8, 24, 48, and 96 h. The results revealed that 100% coagulations of the embryos occurred at TBT doses of 50 and 100 ng/L. The coagulation significantly increased in a dose-dependent manner and TBT might induce coagulation of zebrafish embryos. Heartbeat changes were significantly decreased (p<0.05) in a dose-dependent manner at different TBT doses. LC50 values of TBT for zebrafish embryos were 19.9, 11.7, 7.3, and 5.2 ng/L at 8, 24, 48, and 96 h, respectively. The percentage of mortality was higher in embryos for the trace level of TBT, indicating that embryos are more sensitive to TBT toxicity. Hence, TBT is highly toxic and leads to a lethal effect on the zebrafish embryo, resulting in species extinction and declining biodiversity in the aquatic environment.","PeriodicalId":11784,"journal":{"name":"Environment and Natural Resources Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Toxicological Effects of Tributyltin in Zebrafish (Danio rerio) Embryos\",\"authors\":\"Kumudu Bandara R.V., Pathmalal Manage M.\",\"doi\":\"10.32526/ennrj/20/202200001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tributyltin (TBT) is known as an endocrine-disrupting chemical abundant in the aquatic environment. In the present study, zebrafish fish embryos were used to observe the chronic toxicity of TBT. Fish embryo toxicity analysis was carried out for different TBT concentrations (100, 50, 25, 12.5, 6.2, and 3.1 ng/L) and fertilized eggs were used to test each concentration effect. Fertilized eggs in 24-well plates (20 eggs in each well) were incubated at 26°C for four days and embryo coagulation, heartbeat of the embryo and mortality lethal endpoints (LC50 values) were recorded after 8, 24, 48, and 96 h. The results revealed that 100% coagulations of the embryos occurred at TBT doses of 50 and 100 ng/L. The coagulation significantly increased in a dose-dependent manner and TBT might induce coagulation of zebrafish embryos. Heartbeat changes were significantly decreased (p<0.05) in a dose-dependent manner at different TBT doses. LC50 values of TBT for zebrafish embryos were 19.9, 11.7, 7.3, and 5.2 ng/L at 8, 24, 48, and 96 h, respectively. The percentage of mortality was higher in embryos for the trace level of TBT, indicating that embryos are more sensitive to TBT toxicity. Hence, TBT is highly toxic and leads to a lethal effect on the zebrafish embryo, resulting in species extinction and declining biodiversity in the aquatic environment.\",\"PeriodicalId\":11784,\"journal\":{\"name\":\"Environment and Natural Resources Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment and Natural Resources Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32526/ennrj/20/202200001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment and Natural Resources Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32526/ennrj/20/202200001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
Toxicological Effects of Tributyltin in Zebrafish (Danio rerio) Embryos
Tributyltin (TBT) is known as an endocrine-disrupting chemical abundant in the aquatic environment. In the present study, zebrafish fish embryos were used to observe the chronic toxicity of TBT. Fish embryo toxicity analysis was carried out for different TBT concentrations (100, 50, 25, 12.5, 6.2, and 3.1 ng/L) and fertilized eggs were used to test each concentration effect. Fertilized eggs in 24-well plates (20 eggs in each well) were incubated at 26°C for four days and embryo coagulation, heartbeat of the embryo and mortality lethal endpoints (LC50 values) were recorded after 8, 24, 48, and 96 h. The results revealed that 100% coagulations of the embryos occurred at TBT doses of 50 and 100 ng/L. The coagulation significantly increased in a dose-dependent manner and TBT might induce coagulation of zebrafish embryos. Heartbeat changes were significantly decreased (p<0.05) in a dose-dependent manner at different TBT doses. LC50 values of TBT for zebrafish embryos were 19.9, 11.7, 7.3, and 5.2 ng/L at 8, 24, 48, and 96 h, respectively. The percentage of mortality was higher in embryos for the trace level of TBT, indicating that embryos are more sensitive to TBT toxicity. Hence, TBT is highly toxic and leads to a lethal effect on the zebrafish embryo, resulting in species extinction and declining biodiversity in the aquatic environment.
期刊介绍:
The Environment and Natural Resources Journal is a peer-reviewed journal, which provides insight scientific knowledge into the diverse dimensions of integrated environmental and natural resource management. The journal aims to provide a platform for exchange and distribution of the knowledge and cutting-edge research in the fields of environmental science and natural resource management to academicians, scientists and researchers. The journal accepts a varied array of manuscripts on all aspects of environmental science and natural resource management. The journal scope covers the integration of multidisciplinary sciences for prevention, control, treatment, environmental clean-up and restoration. The study of the existing or emerging problems of environment and natural resources in the region of Southeast Asia and the creation of novel knowledge and/or recommendations of mitigation measures for sustainable development policies are emphasized. The subject areas are diverse, but specific topics of interest include: -Biodiversity -Climate change -Detection and monitoring of polluted sources e.g., industry, mining -Disaster e.g., forest fire, flooding, earthquake, tsunami, or tidal wave -Ecological/Environmental modelling -Emerging contaminants/hazardous wastes investigation and remediation -Environmental dynamics e.g., coastal erosion, sea level rise -Environmental assessment tools, policy and management e.g., GIS, remote sensing, Environmental -Management System (EMS) -Environmental pollution and other novel solutions to pollution -Remediation technology of contaminated environments -Transboundary pollution -Waste and wastewater treatments and disposal technology