离散Sturm-Liouville单调型方程解的渐近性质

Q4 Mathematics
Janusz Migda, E. Schmeidel
{"title":"离散Sturm-Liouville单调型方程解的渐近性质","authors":"Janusz Migda, E. Schmeidel","doi":"10.2478/tmmp-2023-0014","DOIUrl":null,"url":null,"abstract":"Abstract We investigate the discrete equations of the form Δ(rnΔxn)=anf(xσ(n))+bn. \\Delta \\left( {{r_n}\\Delta {x_n}} \\right) = {a_n}f\\left( {{x_{\\sigma \\left( n \\right)}}} \\right) + {b_n}. Using the Knaster-Tarski fixed point theorem, we study solutions with prescribed asymptotic behaviour. Our technique allows us to control the degree of approximation. In particular, we present the results concerning harmonic and geometric approximations of solutions.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"84 1","pages":"35 - 44"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic Properties of Solutions to Discrete Sturm-Liouville Monotone Type Equations\",\"authors\":\"Janusz Migda, E. Schmeidel\",\"doi\":\"10.2478/tmmp-2023-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We investigate the discrete equations of the form Δ(rnΔxn)=anf(xσ(n))+bn. \\\\Delta \\\\left( {{r_n}\\\\Delta {x_n}} \\\\right) = {a_n}f\\\\left( {{x_{\\\\sigma \\\\left( n \\\\right)}}} \\\\right) + {b_n}. Using the Knaster-Tarski fixed point theorem, we study solutions with prescribed asymptotic behaviour. Our technique allows us to control the degree of approximation. In particular, we present the results concerning harmonic and geometric approximations of solutions.\",\"PeriodicalId\":38690,\"journal\":{\"name\":\"Tatra Mountains Mathematical Publications\",\"volume\":\"84 1\",\"pages\":\"35 - 44\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tatra Mountains Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/tmmp-2023-0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2023-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们研究了形式为Δ(rnΔxn)=anf(xσ(n))+bn的离散方程。\Delta\left({{r_n}\Delta{x_n}}\right)={a_n}f\left({x_{\sigma\left(n\right)}}\right)+{b_n}。利用Kaster-Tarski不动点定理,我们研究了具有规定渐近性质的解。我们的技术使我们能够控制近似程度。特别地,我们给出了关于解的调和近似和几何近似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic Properties of Solutions to Discrete Sturm-Liouville Monotone Type Equations
Abstract We investigate the discrete equations of the form Δ(rnΔxn)=anf(xσ(n))+bn. \Delta \left( {{r_n}\Delta {x_n}} \right) = {a_n}f\left( {{x_{\sigma \left( n \right)}}} \right) + {b_n}. Using the Knaster-Tarski fixed point theorem, we study solutions with prescribed asymptotic behaviour. Our technique allows us to control the degree of approximation. In particular, we present the results concerning harmonic and geometric approximations of solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信