Jun Hong Cheok, Kah Onn Lee, V. R. Aparow, N.H. Amer, C.S.P. Peter, K. Magaswaran
{"title":"基于低成本传感器的仪表车辆的场景虚拟安全测试验证","authors":"Jun Hong Cheok, Kah Onn Lee, V. R. Aparow, N.H. Amer, C.S.P. Peter, K. Magaswaran","doi":"10.15282/jmes.17.2.2023.10.0754","DOIUrl":null,"url":null,"abstract":"Autonomous vehicle (AV) requires millions of miles on road to test the reliability of safety systems. It is also difficult to test the AV for critical scenarios which are rare but will endanger road users. Therefore, virtual safety testing simulation platforms are introduced to test the safety systems of the autonomous vehicles in critical scenarios. However, developing the virtual safety testing simulation platform requires information about the environment and driving data from the real world. Besides, it is challenging to build a system to collect driving data which is normally cost intensive especially in developing countries. Paradoxically, these developing countries have poor traffic environment which can provide valuable scenarios for safety testing test cases. Therefore, in this paper, a scenario-based testing using virtual simulation platform is developed using data captured by a low-cost sensor-based instrumented vehicle. The instrumented vehicle is built by low-cost off-the-shelf components for the testing purpose. The instrumented vehicle is used for validation process in IPG CarMaker’s vehicle model using SAE standards. Then, the validated vehicle model is used as an autonomous vehicle in IPG CarMaker for the virtual scenario-based safety testing. The whole validation process from data collection to data logging is carried out using various economic sensors instead of a single industrial system. This approach greatly reduce the cost of the instrumented vehicle and the result of the scenario-based testing shows that the virtual scenarios developed in IPG CarMaker can be used for validation purpose with actual scenarios using low-cost sensor based instrumented vehicle as low as 4% root mean square percentage error.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation of scenario-based virtual safety testing using low-cost sensor-based instrumented vehicle\",\"authors\":\"Jun Hong Cheok, Kah Onn Lee, V. R. Aparow, N.H. Amer, C.S.P. Peter, K. Magaswaran\",\"doi\":\"10.15282/jmes.17.2.2023.10.0754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous vehicle (AV) requires millions of miles on road to test the reliability of safety systems. It is also difficult to test the AV for critical scenarios which are rare but will endanger road users. Therefore, virtual safety testing simulation platforms are introduced to test the safety systems of the autonomous vehicles in critical scenarios. However, developing the virtual safety testing simulation platform requires information about the environment and driving data from the real world. Besides, it is challenging to build a system to collect driving data which is normally cost intensive especially in developing countries. Paradoxically, these developing countries have poor traffic environment which can provide valuable scenarios for safety testing test cases. Therefore, in this paper, a scenario-based testing using virtual simulation platform is developed using data captured by a low-cost sensor-based instrumented vehicle. The instrumented vehicle is built by low-cost off-the-shelf components for the testing purpose. The instrumented vehicle is used for validation process in IPG CarMaker’s vehicle model using SAE standards. Then, the validated vehicle model is used as an autonomous vehicle in IPG CarMaker for the virtual scenario-based safety testing. The whole validation process from data collection to data logging is carried out using various economic sensors instead of a single industrial system. This approach greatly reduce the cost of the instrumented vehicle and the result of the scenario-based testing shows that the virtual scenarios developed in IPG CarMaker can be used for validation purpose with actual scenarios using low-cost sensor based instrumented vehicle as low as 4% root mean square percentage error.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/jmes.17.2.2023.10.0754\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/jmes.17.2.2023.10.0754","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Validation of scenario-based virtual safety testing using low-cost sensor-based instrumented vehicle
Autonomous vehicle (AV) requires millions of miles on road to test the reliability of safety systems. It is also difficult to test the AV for critical scenarios which are rare but will endanger road users. Therefore, virtual safety testing simulation platforms are introduced to test the safety systems of the autonomous vehicles in critical scenarios. However, developing the virtual safety testing simulation platform requires information about the environment and driving data from the real world. Besides, it is challenging to build a system to collect driving data which is normally cost intensive especially in developing countries. Paradoxically, these developing countries have poor traffic environment which can provide valuable scenarios for safety testing test cases. Therefore, in this paper, a scenario-based testing using virtual simulation platform is developed using data captured by a low-cost sensor-based instrumented vehicle. The instrumented vehicle is built by low-cost off-the-shelf components for the testing purpose. The instrumented vehicle is used for validation process in IPG CarMaker’s vehicle model using SAE standards. Then, the validated vehicle model is used as an autonomous vehicle in IPG CarMaker for the virtual scenario-based safety testing. The whole validation process from data collection to data logging is carried out using various economic sensors instead of a single industrial system. This approach greatly reduce the cost of the instrumented vehicle and the result of the scenario-based testing shows that the virtual scenarios developed in IPG CarMaker can be used for validation purpose with actual scenarios using low-cost sensor based instrumented vehicle as low as 4% root mean square percentage error.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.