{"title":"比萨斜塔序贯施工过程及结构模拟","authors":"J. Geng, Z. Meng, B. Yin, L. Zhu","doi":"10.4236/jbcpr.2020.81003","DOIUrl":null,"url":null,"abstract":"The leaning of structures happens all around the world and generates impacts on different extents; thus, it is important to learn about the causes behind. In this report, the sequential construction of a typical leaning structure, the Tower of Pisa, is discussed and simulated by using a finite element code, PLAXIS. The simulation is performed on a two-dimensional plane with simplifications taken into consideration in making modeling feasible under limitations. Three distinct models are built with one as a control variable, while the other two models are set up with exact eccentricity. Data are obtained from the analysis and are plotted in a graph to clearly show the relationship between the tilting angle and construction phases. With reasonable and completed simulation, the study is able to show the significant role compressible subsoil plays in impacting the tilting performance of a tall building.","PeriodicalId":64333,"journal":{"name":"房屋建造与规划研究(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Simulation on Sequential Construction Process and Structure of the Pisa Tower\",\"authors\":\"J. Geng, Z. Meng, B. Yin, L. Zhu\",\"doi\":\"10.4236/jbcpr.2020.81003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The leaning of structures happens all around the world and generates impacts on different extents; thus, it is important to learn about the causes behind. In this report, the sequential construction of a typical leaning structure, the Tower of Pisa, is discussed and simulated by using a finite element code, PLAXIS. The simulation is performed on a two-dimensional plane with simplifications taken into consideration in making modeling feasible under limitations. Three distinct models are built with one as a control variable, while the other two models are set up with exact eccentricity. Data are obtained from the analysis and are plotted in a graph to clearly show the relationship between the tilting angle and construction phases. With reasonable and completed simulation, the study is able to show the significant role compressible subsoil plays in impacting the tilting performance of a tall building.\",\"PeriodicalId\":64333,\"journal\":{\"name\":\"房屋建造与规划研究(英文)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"房屋建造与规划研究(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4236/jbcpr.2020.81003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"房屋建造与规划研究(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/jbcpr.2020.81003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation on Sequential Construction Process and Structure of the Pisa Tower
The leaning of structures happens all around the world and generates impacts on different extents; thus, it is important to learn about the causes behind. In this report, the sequential construction of a typical leaning structure, the Tower of Pisa, is discussed and simulated by using a finite element code, PLAXIS. The simulation is performed on a two-dimensional plane with simplifications taken into consideration in making modeling feasible under limitations. Three distinct models are built with one as a control variable, while the other two models are set up with exact eccentricity. Data are obtained from the analysis and are plotted in a graph to clearly show the relationship between the tilting angle and construction phases. With reasonable and completed simulation, the study is able to show the significant role compressible subsoil plays in impacting the tilting performance of a tall building.