自伴Toeplitz算子的谱分析

IF 0.7 4区 数学 Q2 MATHEMATICS
A. Sobolev, D. Yafaev
{"title":"自伴Toeplitz算子的谱分析","authors":"A. Sobolev, D. Yafaev","doi":"10.7900/jot.2019jun19.2244","DOIUrl":null,"url":null,"abstract":"The paper pursues three objectives. Firstly, we provide an expanded version of spectral analysis of self-adjoint Toeplitz operators, initially built by M. Rosenblum in the 1960's. We offer some improvements to Rosenblum's approach: for instance, our proof of the absolute continuity, relying on a weak version of the limiting absorption principle, is more direct. \nSecondly, we study in detail Toeplitz operators with finite spectral multiplicity. In particular, we introduce generalized eigenfunctions and investigate their properties. \nThirdly, we develop a more detailed spectral analysis for piecewise continuous symbols. This is necessary for construction of scattering theory for Toeplitz operators with such symbols.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On spectral analysis of self-adjoint Toeplitz operators\",\"authors\":\"A. Sobolev, D. Yafaev\",\"doi\":\"10.7900/jot.2019jun19.2244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper pursues three objectives. Firstly, we provide an expanded version of spectral analysis of self-adjoint Toeplitz operators, initially built by M. Rosenblum in the 1960's. We offer some improvements to Rosenblum's approach: for instance, our proof of the absolute continuity, relying on a weak version of the limiting absorption principle, is more direct. \\nSecondly, we study in detail Toeplitz operators with finite spectral multiplicity. In particular, we introduce generalized eigenfunctions and investigate their properties. \\nThirdly, we develop a more detailed spectral analysis for piecewise continuous symbols. This is necessary for construction of scattering theory for Toeplitz operators with such symbols.\",\"PeriodicalId\":50104,\"journal\":{\"name\":\"Journal of Operator Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7900/jot.2019jun19.2244\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2019jun19.2244","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文追求三个目标。首先,我们提供了自伴Toeplitz算子的谱分析的扩展版本,该算子最初由M.Rosenblum在20世纪60年代建立。我们对Rosenblum的方法进行了一些改进:例如,我们对绝对连续性的证明,依赖于极限吸收原理的弱版本,更直接。其次,我们详细研究了具有有限谱多重性的Toeplitz算子。特别地,我们引入了广义本征函数,并研究了它们的性质。第三,我们对分段连续符号进行了更详细的谱分析。这对于构造具有这些符号的Toeplitz算子的散射理论是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On spectral analysis of self-adjoint Toeplitz operators
The paper pursues three objectives. Firstly, we provide an expanded version of spectral analysis of self-adjoint Toeplitz operators, initially built by M. Rosenblum in the 1960's. We offer some improvements to Rosenblum's approach: for instance, our proof of the absolute continuity, relying on a weak version of the limiting absorption principle, is more direct. Secondly, we study in detail Toeplitz operators with finite spectral multiplicity. In particular, we introduce generalized eigenfunctions and investigate their properties. Thirdly, we develop a more detailed spectral analysis for piecewise continuous symbols. This is necessary for construction of scattering theory for Toeplitz operators with such symbols.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信