{"title":"卷帘对透射日光色度和显色性能的影响","authors":"A. Villalba, É. Correa, Julieta Yamín, A. Pattini","doi":"10.15627/jd.2022.1","DOIUrl":null,"url":null,"abstract":"Several studies have focused on the performance of roller shades in terms of glare, outdoor vision, daylight availability and energy performance. Currently, other parameters linked to visual amenity, such as chromaticity and colour rendition, are becoming relevant. When solar radiation passes through a window, it changes its spectral composition due to the presence of the solar shading system and the glazing. Against this background, the present study focuses on the spectral transmittance of eleven woven screen fabrics and its influence on the chromaticity and colour rendition. Results show that dark-coloured woven screen shades provide higher correlated colour temperature (CCT) values (range 6470 K - 6479 K) and therefore would produce “cooler” visual environments, while light-coloured woven screen shades provide lower CCT values (range 5210 K - 5644 K) creating “warmer” visual environments. Regarding colour rendering metrics, the light transmitted through all the studied woven shades shows excellent colour rendition. Finally, it is concluded that the combined analysis of optical properties, spectral data and its impact on parameters that determine the quality of lighting in an interior space enables an understanding of woven screens performance, which results in the possibility of taking appropriate decisions when selecting woven shades.","PeriodicalId":37388,"journal":{"name":"Journal of Daylighting","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of Roller Shades on Chromaticity and Colour Rendering Performance of Transmitted Daylight\",\"authors\":\"A. Villalba, É. Correa, Julieta Yamín, A. Pattini\",\"doi\":\"10.15627/jd.2022.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several studies have focused on the performance of roller shades in terms of glare, outdoor vision, daylight availability and energy performance. Currently, other parameters linked to visual amenity, such as chromaticity and colour rendition, are becoming relevant. When solar radiation passes through a window, it changes its spectral composition due to the presence of the solar shading system and the glazing. Against this background, the present study focuses on the spectral transmittance of eleven woven screen fabrics and its influence on the chromaticity and colour rendition. Results show that dark-coloured woven screen shades provide higher correlated colour temperature (CCT) values (range 6470 K - 6479 K) and therefore would produce “cooler” visual environments, while light-coloured woven screen shades provide lower CCT values (range 5210 K - 5644 K) creating “warmer” visual environments. Regarding colour rendering metrics, the light transmitted through all the studied woven shades shows excellent colour rendition. Finally, it is concluded that the combined analysis of optical properties, spectral data and its impact on parameters that determine the quality of lighting in an interior space enables an understanding of woven screens performance, which results in the possibility of taking appropriate decisions when selecting woven shades.\",\"PeriodicalId\":37388,\"journal\":{\"name\":\"Journal of Daylighting\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Daylighting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15627/jd.2022.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Daylighting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15627/jd.2022.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
Effect of Roller Shades on Chromaticity and Colour Rendering Performance of Transmitted Daylight
Several studies have focused on the performance of roller shades in terms of glare, outdoor vision, daylight availability and energy performance. Currently, other parameters linked to visual amenity, such as chromaticity and colour rendition, are becoming relevant. When solar radiation passes through a window, it changes its spectral composition due to the presence of the solar shading system and the glazing. Against this background, the present study focuses on the spectral transmittance of eleven woven screen fabrics and its influence on the chromaticity and colour rendition. Results show that dark-coloured woven screen shades provide higher correlated colour temperature (CCT) values (range 6470 K - 6479 K) and therefore would produce “cooler” visual environments, while light-coloured woven screen shades provide lower CCT values (range 5210 K - 5644 K) creating “warmer” visual environments. Regarding colour rendering metrics, the light transmitted through all the studied woven shades shows excellent colour rendition. Finally, it is concluded that the combined analysis of optical properties, spectral data and its impact on parameters that determine the quality of lighting in an interior space enables an understanding of woven screens performance, which results in the possibility of taking appropriate decisions when selecting woven shades.
期刊介绍:
Journal of Daylighting is an international journal devoted to investigations of daylighting in buildings. It is the leading journal that publishes original research on all aspects of solar energy and lighting. Areas of special interest for this journal include, but are not limited to, the following: -Daylighting systems -Lighting simulation -Lighting designs -Luminaires -Lighting metrology and light quality -Lighting control -Building physics - lighting -Building energy modeling -Energy efficient buildings -Zero-energy buildings -Indoor environment quality -Sustainable solar energy systems -Application of solar energy sources in buildings -Photovoltaics systems -Building-integrated photovoltaics -Concentrator technology -Concentrator photovoltaic -Solar thermal