Balasubramanian Vijayaragavan, S. P. Asok, Chandrasekar Ramalekshmi Shakthi Ganesh
{"title":"内管外增强双管换热器的传热特性","authors":"Balasubramanian Vijayaragavan, S. P. Asok, Chandrasekar Ramalekshmi Shakthi Ganesh","doi":"10.14311/ap.2023.63.0065","DOIUrl":null,"url":null,"abstract":"An investigation on enhancement of heat transfer is carried out for a double pipe heat exchanger in which the outer wall of the inner pipe is provided with circumferential labyrinth passages. Rectangular and triangular cavities with fixed labyrinth tooth thickness, height, and pitch are considered and the effect of added labyrinth structures on the heat transfer characteristics is discussed. A two-dimensional steady numerical simulation is carried out using ANSYS-FLUENT software. The flow Reynolds number equals to 20 000 and 43 000 for the hot and cold fluids, respectively, while other fluid properties are constant. From the numerical analysis carried out in this work, it is identified that the added labyrinth passages in the heat exchange surface improve the heat transfer rate and can reduce the length of the heat exchanger. Numerical predictions agree well with the results obtained from the experiment conducted.","PeriodicalId":45804,"journal":{"name":"Acta Polytechnica","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat transfer characteristics of double pipe heat exchanger having externally enhanced inner pipe\",\"authors\":\"Balasubramanian Vijayaragavan, S. P. Asok, Chandrasekar Ramalekshmi Shakthi Ganesh\",\"doi\":\"10.14311/ap.2023.63.0065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An investigation on enhancement of heat transfer is carried out for a double pipe heat exchanger in which the outer wall of the inner pipe is provided with circumferential labyrinth passages. Rectangular and triangular cavities with fixed labyrinth tooth thickness, height, and pitch are considered and the effect of added labyrinth structures on the heat transfer characteristics is discussed. A two-dimensional steady numerical simulation is carried out using ANSYS-FLUENT software. The flow Reynolds number equals to 20 000 and 43 000 for the hot and cold fluids, respectively, while other fluid properties are constant. From the numerical analysis carried out in this work, it is identified that the added labyrinth passages in the heat exchange surface improve the heat transfer rate and can reduce the length of the heat exchanger. Numerical predictions agree well with the results obtained from the experiment conducted.\",\"PeriodicalId\":45804,\"journal\":{\"name\":\"Acta Polytechnica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Polytechnica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14311/ap.2023.63.0065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Polytechnica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14311/ap.2023.63.0065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Heat transfer characteristics of double pipe heat exchanger having externally enhanced inner pipe
An investigation on enhancement of heat transfer is carried out for a double pipe heat exchanger in which the outer wall of the inner pipe is provided with circumferential labyrinth passages. Rectangular and triangular cavities with fixed labyrinth tooth thickness, height, and pitch are considered and the effect of added labyrinth structures on the heat transfer characteristics is discussed. A two-dimensional steady numerical simulation is carried out using ANSYS-FLUENT software. The flow Reynolds number equals to 20 000 and 43 000 for the hot and cold fluids, respectively, while other fluid properties are constant. From the numerical analysis carried out in this work, it is identified that the added labyrinth passages in the heat exchange surface improve the heat transfer rate and can reduce the length of the heat exchanger. Numerical predictions agree well with the results obtained from the experiment conducted.
期刊介绍:
Acta Polytechnica is a scientific journal published by CTU in Prague. The main title, Acta Polytechnica, is accompanied by the subtitle Journal of Advanced Engineering, which defines the scope of the journal more precisely - Acta Polytechnica covers a wide spectrum of engineering topics, physics and mathematics. Our aim is to be a high-quality multi-disciplinary journal publishing the results of basic research and also applied research. We place emphasis on the quality of all published papers. The journal should also serve as a bridge between basic research in natural sciences and applied research in all technical disciplines. The innovative research results published by young researchers or by postdoctoral fellows, and also the high-quality papers by researchers from the international scientific community, reflect the good position of CTU in the World University Rankings. We hope that you will find our journal interesting, and that it will serve as a valuable source of scientific information.