内管外增强双管换热器的传热特性

IF 0.6 Q3 ENGINEERING, MULTIDISCIPLINARY
Balasubramanian Vijayaragavan, S. P. Asok, Chandrasekar Ramalekshmi Shakthi Ganesh
{"title":"内管外增强双管换热器的传热特性","authors":"Balasubramanian Vijayaragavan, S. P. Asok, Chandrasekar Ramalekshmi Shakthi Ganesh","doi":"10.14311/ap.2023.63.0065","DOIUrl":null,"url":null,"abstract":"An investigation on enhancement of heat transfer is carried out for a double pipe heat exchanger in which the outer wall of the inner pipe is provided with circumferential labyrinth passages. Rectangular and triangular cavities with fixed labyrinth tooth thickness, height, and pitch are considered and the effect of added labyrinth structures on the heat transfer characteristics is discussed. A two-dimensional steady numerical simulation is carried out using ANSYS-FLUENT software. The flow Reynolds number equals to 20 000 and 43 000 for the hot and cold fluids, respectively, while other fluid properties are constant. From the numerical analysis carried out in this work, it is identified that the added labyrinth passages in the heat exchange surface improve the heat transfer rate and can reduce the length of the heat exchanger. Numerical predictions agree well with the results obtained from the experiment conducted.","PeriodicalId":45804,"journal":{"name":"Acta Polytechnica","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat transfer characteristics of double pipe heat exchanger having externally enhanced inner pipe\",\"authors\":\"Balasubramanian Vijayaragavan, S. P. Asok, Chandrasekar Ramalekshmi Shakthi Ganesh\",\"doi\":\"10.14311/ap.2023.63.0065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An investigation on enhancement of heat transfer is carried out for a double pipe heat exchanger in which the outer wall of the inner pipe is provided with circumferential labyrinth passages. Rectangular and triangular cavities with fixed labyrinth tooth thickness, height, and pitch are considered and the effect of added labyrinth structures on the heat transfer characteristics is discussed. A two-dimensional steady numerical simulation is carried out using ANSYS-FLUENT software. The flow Reynolds number equals to 20 000 and 43 000 for the hot and cold fluids, respectively, while other fluid properties are constant. From the numerical analysis carried out in this work, it is identified that the added labyrinth passages in the heat exchange surface improve the heat transfer rate and can reduce the length of the heat exchanger. Numerical predictions agree well with the results obtained from the experiment conducted.\",\"PeriodicalId\":45804,\"journal\":{\"name\":\"Acta Polytechnica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Polytechnica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14311/ap.2023.63.0065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Polytechnica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14311/ap.2023.63.0065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对内管外壁设置周向迷宫通道的双管换热器进行了强化传热的研究。考虑了固定齿厚、齿高和齿距的矩形和三角形腔体,讨论了增加齿厚、齿高和齿距对腔体换热特性的影响。利用ANSYS-FLUENT软件进行了二维稳态数值模拟。在其他流体性质不变的情况下,热流体和冷流体的流动雷诺数分别为20 000和43 000。通过数值分析,发现在换热表面增加迷宫通道可以提高换热率,缩短换热器长度。数值预测与实验结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heat transfer characteristics of double pipe heat exchanger having externally enhanced inner pipe
An investigation on enhancement of heat transfer is carried out for a double pipe heat exchanger in which the outer wall of the inner pipe is provided with circumferential labyrinth passages. Rectangular and triangular cavities with fixed labyrinth tooth thickness, height, and pitch are considered and the effect of added labyrinth structures on the heat transfer characteristics is discussed. A two-dimensional steady numerical simulation is carried out using ANSYS-FLUENT software. The flow Reynolds number equals to 20 000 and 43 000 for the hot and cold fluids, respectively, while other fluid properties are constant. From the numerical analysis carried out in this work, it is identified that the added labyrinth passages in the heat exchange surface improve the heat transfer rate and can reduce the length of the heat exchanger. Numerical predictions agree well with the results obtained from the experiment conducted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Polytechnica
Acta Polytechnica ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.90
自引率
12.50%
发文量
49
审稿时长
24 weeks
期刊介绍: Acta Polytechnica is a scientific journal published by CTU in Prague. The main title, Acta Polytechnica, is accompanied by the subtitle Journal of Advanced Engineering, which defines the scope of the journal more precisely - Acta Polytechnica covers a wide spectrum of engineering topics, physics and mathematics. Our aim is to be a high-quality multi-disciplinary journal publishing the results of basic research and also applied research. We place emphasis on the quality of all published papers. The journal should also serve as a bridge between basic research in natural sciences and applied research in all technical disciplines. The innovative research results published by young researchers or by postdoctoral fellows, and also the high-quality papers by researchers from the international scientific community, reflect the good position of CTU in the World University Rankings. We hope that you will find our journal interesting, and that it will serve as a valuable source of scientific information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信