哈密顿蒙特卡罗在强对数凹分布上的混合:连续动力学

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
Oren Mangoubi, Aaron Smith
{"title":"哈密顿蒙特卡罗在强对数凹分布上的混合:连续动力学","authors":"Oren Mangoubi, Aaron Smith","doi":"10.1214/20-aap1640","DOIUrl":null,"url":null,"abstract":"We obtain several quantitative bounds on the mixing properties of an “ideal” Hamiltonian Monte Carlo (HMC) Markov chain for a strongly log-concave target distribution π on R. Our main result says that the HMC Markov chain generates a sample with Wasserstein error in roughly O(κ log(1/ )) steps, where the condition number κ = M2 m2 is the ratio of the maximum M2 and minimum m2 eigenvalues of the Hessian of − log(π). In particular, this mixing bound does not depend explicitly on the dimension d. These results significantly extend and improve previous quantitative bounds on the mixing of ideal HMC, and can be used to analyze more realistic HMC algorithms. The main ingredient of our argument is a proof that initially “parallel” Hamiltonian trajectories contract over much longer steps than would be predicted by previous heuristics based on the Jacobi manifold.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Mixing of Hamiltonian Monte Carlo on strongly log-concave distributions: Continuous dynamics\",\"authors\":\"Oren Mangoubi, Aaron Smith\",\"doi\":\"10.1214/20-aap1640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain several quantitative bounds on the mixing properties of an “ideal” Hamiltonian Monte Carlo (HMC) Markov chain for a strongly log-concave target distribution π on R. Our main result says that the HMC Markov chain generates a sample with Wasserstein error in roughly O(κ log(1/ )) steps, where the condition number κ = M2 m2 is the ratio of the maximum M2 and minimum m2 eigenvalues of the Hessian of − log(π). In particular, this mixing bound does not depend explicitly on the dimension d. These results significantly extend and improve previous quantitative bounds on the mixing of ideal HMC, and can be used to analyze more realistic HMC algorithms. The main ingredient of our argument is a proof that initially “parallel” Hamiltonian trajectories contract over much longer steps than would be predicted by previous heuristics based on the Jacobi manifold.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/20-aap1640\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/20-aap1640","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 17

摘要

对于R上的强对数凹目标分布π,我们获得了“理想”哈密顿蒙特卡罗(HMC)马尔可夫链混合性质的几个定量界,其中条件数κ=M2 M2是−log(π)的Hessian的最大M2和最小M2特征值之比。特别地,这个混合边界并不明确地取决于维度d。这些结果显著地扩展和改进了先前关于理想HMC混合的定量边界,并且可以用于分析更现实的HMC算法。我们论点的主要内容是证明最初“平行”的哈密顿轨迹在比以前基于雅可比流形的启发式预测更长的步骤上收缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixing of Hamiltonian Monte Carlo on strongly log-concave distributions: Continuous dynamics
We obtain several quantitative bounds on the mixing properties of an “ideal” Hamiltonian Monte Carlo (HMC) Markov chain for a strongly log-concave target distribution π on R. Our main result says that the HMC Markov chain generates a sample with Wasserstein error in roughly O(κ log(1/ )) steps, where the condition number κ = M2 m2 is the ratio of the maximum M2 and minimum m2 eigenvalues of the Hessian of − log(π). In particular, this mixing bound does not depend explicitly on the dimension d. These results significantly extend and improve previous quantitative bounds on the mixing of ideal HMC, and can be used to analyze more realistic HMC algorithms. The main ingredient of our argument is a proof that initially “parallel” Hamiltonian trajectories contract over much longer steps than would be predicted by previous heuristics based on the Jacobi manifold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信