{"title":"拉伸理想的减少数","authors":"K. Ozeki","doi":"10.2969/jmsj/86498649","DOIUrl":null,"url":null,"abstract":"The homological property of the associated graded ring of an ideal is an important problem in commutative algebra and algebraic geometry. In this paper we explore the almost Cohen-Macaulayness of the associated graded ring of stretched m-primary ideals in the case where the reduction number attains almost minimal value in a Cohen-Macaulay local ring (A,m). As an application, we present complete descriptions of the associated graded ring of stretched m-primary ideals with small reduction number.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The reduction number of stretched ideals\",\"authors\":\"K. Ozeki\",\"doi\":\"10.2969/jmsj/86498649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The homological property of the associated graded ring of an ideal is an important problem in commutative algebra and algebraic geometry. In this paper we explore the almost Cohen-Macaulayness of the associated graded ring of stretched m-primary ideals in the case where the reduction number attains almost minimal value in a Cohen-Macaulay local ring (A,m). As an application, we present complete descriptions of the associated graded ring of stretched m-primary ideals with small reduction number.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2969/jmsj/86498649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/86498649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The homological property of the associated graded ring of an ideal is an important problem in commutative algebra and algebraic geometry. In this paper we explore the almost Cohen-Macaulayness of the associated graded ring of stretched m-primary ideals in the case where the reduction number attains almost minimal value in a Cohen-Macaulay local ring (A,m). As an application, we present complete descriptions of the associated graded ring of stretched m-primary ideals with small reduction number.