{"title":"一类具有记忆的波动方程型p-拉普拉斯算子的全局解和渐近性质","authors":"C. Raposo, A. Cattai, J. Ribeiro","doi":"10.30538/PSRP-OMA2018.0025","DOIUrl":null,"url":null,"abstract":"In this work we study the global solution, uniqueness and asymptotic behaviour of the nonlinear equation utt − ∆pu = ∆u− g ∗ ∆u where ∆pu is the nonlinear p-Laplacian operator, p ≥ 2 and g ∗ ∆u is a memory damping. The global solution is constructed by means of the Faedo-Galerkin approximations taking into account that the initial data is in appropriated set of stability created from the Nehari manifold and the asymptotic behavior is obtained by using a result of P. Martinez based on new inequality that generalizes the results of Haraux and Nakao. Mathematics Subject Classification: 35B40, 35L70, 35A01, 74DXX.","PeriodicalId":52741,"journal":{"name":"Open Journal of Mathematical Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Global Solution and Asymptotic Behaviour for a Wave Equation type p-Laplacian with Memory\",\"authors\":\"C. Raposo, A. Cattai, J. Ribeiro\",\"doi\":\"10.30538/PSRP-OMA2018.0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we study the global solution, uniqueness and asymptotic behaviour of the nonlinear equation utt − ∆pu = ∆u− g ∗ ∆u where ∆pu is the nonlinear p-Laplacian operator, p ≥ 2 and g ∗ ∆u is a memory damping. The global solution is constructed by means of the Faedo-Galerkin approximations taking into account that the initial data is in appropriated set of stability created from the Nehari manifold and the asymptotic behavior is obtained by using a result of P. Martinez based on new inequality that generalizes the results of Haraux and Nakao. Mathematics Subject Classification: 35B40, 35L70, 35A01, 74DXX.\",\"PeriodicalId\":52741,\"journal\":{\"name\":\"Open Journal of Mathematical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Journal of Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30538/PSRP-OMA2018.0025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/PSRP-OMA2018.0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Global Solution and Asymptotic Behaviour for a Wave Equation type p-Laplacian with Memory
In this work we study the global solution, uniqueness and asymptotic behaviour of the nonlinear equation utt − ∆pu = ∆u− g ∗ ∆u where ∆pu is the nonlinear p-Laplacian operator, p ≥ 2 and g ∗ ∆u is a memory damping. The global solution is constructed by means of the Faedo-Galerkin approximations taking into account that the initial data is in appropriated set of stability created from the Nehari manifold and the asymptotic behavior is obtained by using a result of P. Martinez based on new inequality that generalizes the results of Haraux and Nakao. Mathematics Subject Classification: 35B40, 35L70, 35A01, 74DXX.