欧几里得抖动树表示的组合性质

Q4 Mathematics
A. Lörinczi
{"title":"欧几里得抖动树表示的组合性质","authors":"A. Lörinczi","doi":"10.24193/mathcluj.2023.1.09","DOIUrl":null,"url":null,"abstract":"We verify computationally a conjecture on the field independence of tree representations of Euclidean quivers, with dimension vector bounded by the minimal radical vector of the quiver. This includes a large class of exceptional representations, in particular all the regular non-homogeneous exceptionals. In addition we also present some thought-provoking findings, which further confirms the combinatorial nature of the category of representations of tame quivers.","PeriodicalId":39356,"journal":{"name":"Mathematica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the combinatorial nature of tree representations of Euclidean quivers\",\"authors\":\"A. Lörinczi\",\"doi\":\"10.24193/mathcluj.2023.1.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We verify computationally a conjecture on the field independence of tree representations of Euclidean quivers, with dimension vector bounded by the minimal radical vector of the quiver. This includes a large class of exceptional representations, in particular all the regular non-homogeneous exceptionals. In addition we also present some thought-provoking findings, which further confirms the combinatorial nature of the category of representations of tame quivers.\",\"PeriodicalId\":39356,\"journal\":{\"name\":\"Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/mathcluj.2023.1.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/mathcluj.2023.1.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们计算验证了欧氏颤栗树表示的场无关性的一个猜想,其中维数向量由颤栗的最小根向量限定。这包括一大类异常表示,特别是所有规则的非齐次异常。此外,我们还提出了一些发人深省的发现,这进一步证实了驯服颤抖的表现类别的组合性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the combinatorial nature of tree representations of Euclidean quivers
We verify computationally a conjecture on the field independence of tree representations of Euclidean quivers, with dimension vector bounded by the minimal radical vector of the quiver. This includes a large class of exceptional representations, in particular all the regular non-homogeneous exceptionals. In addition we also present some thought-provoking findings, which further confirms the combinatorial nature of the category of representations of tame quivers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematica
Mathematica Mathematics-Mathematics (all)
CiteScore
0.30
自引率
0.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信