单(p=1)中值问题的多数定理与局部空间自相关

IF 3.3 3区 地球科学 Q1 GEOGRAPHY
Daniel A. Griffith, Yongwan Chun, Hyun Kim
{"title":"单(p=1)中值问题的多数定理与局部空间自相关","authors":"Daniel A. Griffith,&nbsp;Yongwan Chun,&nbsp;Hyun Kim","doi":"10.1111/gean.12321","DOIUrl":null,"url":null,"abstract":"<p>Except for about a half dozen papers, virtually all (co)authored by Griffith, the existing literature lacks much content about the interface between spatial optimization, a popular form of geographic analysis, and spatial autocorrelation, a fundamental property of georeferenced data. The popular <i>p</i>-median location-allocation problem highlights this situation: the empirical geographic distribution of demand virtually always exhibits positive spatial autocorrelation. This property of geospatial data offers additional overlooked information for solving such spatial optimization problems when it actually relates to their solutions. With a proof-of-concept outlook, this paper articulates connections between the well-known Majority Theorem of the 1-median minisum problem and local indices of spatial autocorrelation; the LISA statistics appear to be the more useful of these later statistics because they better embrace negative spatial autocorrelation. The relationship articulation outlined here results in the positing of a new proposition labeled the egalitarian theorem.</p>","PeriodicalId":12533,"journal":{"name":"Geographical Analysis","volume":"55 1","pages":"107-124"},"PeriodicalIF":3.3000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Majority Theorem for the Single (p = 1) Median Problem and Local Spatial Autocorrelation\",\"authors\":\"Daniel A. Griffith,&nbsp;Yongwan Chun,&nbsp;Hyun Kim\",\"doi\":\"10.1111/gean.12321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Except for about a half dozen papers, virtually all (co)authored by Griffith, the existing literature lacks much content about the interface between spatial optimization, a popular form of geographic analysis, and spatial autocorrelation, a fundamental property of georeferenced data. The popular <i>p</i>-median location-allocation problem highlights this situation: the empirical geographic distribution of demand virtually always exhibits positive spatial autocorrelation. This property of geospatial data offers additional overlooked information for solving such spatial optimization problems when it actually relates to their solutions. With a proof-of-concept outlook, this paper articulates connections between the well-known Majority Theorem of the 1-median minisum problem and local indices of spatial autocorrelation; the LISA statistics appear to be the more useful of these later statistics because they better embrace negative spatial autocorrelation. The relationship articulation outlined here results in the positing of a new proposition labeled the egalitarian theorem.</p>\",\"PeriodicalId\":12533,\"journal\":{\"name\":\"Geographical Analysis\",\"volume\":\"55 1\",\"pages\":\"107-124\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2022-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geographical Analysis\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gean.12321\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geographical Analysis","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gean.12321","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

除了大约六篇论文(几乎全部由Griffith共同撰写)之外,现有文献缺乏关于空间优化(一种流行的地理分析形式)和空间自相关(地理参考数据的基本属性)之间接口的内容。流行的p中位数位置分配问题突出了这种情况:需求的经验地理分布几乎总是表现出正的空间自相关。地理空间数据的这一属性为解决此类空间优化问题提供了额外的被忽视的信息,而这些信息实际上与它们的解决方案有关。本文从概念证明的角度,阐述了著名的1-中值极小问题多数定理与空间自相关局部指标之间的联系;LISA统计数据似乎比这些后期统计数据更有用,因为它们更好地包含负空间自相关。这里所概述的关系阐释导致了一个被称为平等主义定理的新命题的提出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Majority Theorem for the Single (p = 1) Median Problem and Local Spatial Autocorrelation

Except for about a half dozen papers, virtually all (co)authored by Griffith, the existing literature lacks much content about the interface between spatial optimization, a popular form of geographic analysis, and spatial autocorrelation, a fundamental property of georeferenced data. The popular p-median location-allocation problem highlights this situation: the empirical geographic distribution of demand virtually always exhibits positive spatial autocorrelation. This property of geospatial data offers additional overlooked information for solving such spatial optimization problems when it actually relates to their solutions. With a proof-of-concept outlook, this paper articulates connections between the well-known Majority Theorem of the 1-median minisum problem and local indices of spatial autocorrelation; the LISA statistics appear to be the more useful of these later statistics because they better embrace negative spatial autocorrelation. The relationship articulation outlined here results in the positing of a new proposition labeled the egalitarian theorem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
5.60%
发文量
40
期刊介绍: First in its specialty area and one of the most frequently cited publications in geography, Geographical Analysis has, since 1969, presented significant advances in geographical theory, model building, and quantitative methods to geographers and scholars in a wide spectrum of related fields. Traditionally, mathematical and nonmathematical articulations of geographical theory, and statements and discussions of the analytic paradigm are published in the journal. Spatial data analyses and spatial econometrics and statistics are strongly represented.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信