{"title":"单(p=1)中值问题的多数定理与局部空间自相关","authors":"Daniel A. Griffith, Yongwan Chun, Hyun Kim","doi":"10.1111/gean.12321","DOIUrl":null,"url":null,"abstract":"<p>Except for about a half dozen papers, virtually all (co)authored by Griffith, the existing literature lacks much content about the interface between spatial optimization, a popular form of geographic analysis, and spatial autocorrelation, a fundamental property of georeferenced data. The popular <i>p</i>-median location-allocation problem highlights this situation: the empirical geographic distribution of demand virtually always exhibits positive spatial autocorrelation. This property of geospatial data offers additional overlooked information for solving such spatial optimization problems when it actually relates to their solutions. With a proof-of-concept outlook, this paper articulates connections between the well-known Majority Theorem of the 1-median minisum problem and local indices of spatial autocorrelation; the LISA statistics appear to be the more useful of these later statistics because they better embrace negative spatial autocorrelation. The relationship articulation outlined here results in the positing of a new proposition labeled the egalitarian theorem.</p>","PeriodicalId":12533,"journal":{"name":"Geographical Analysis","volume":"55 1","pages":"107-124"},"PeriodicalIF":3.3000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Majority Theorem for the Single (p = 1) Median Problem and Local Spatial Autocorrelation\",\"authors\":\"Daniel A. Griffith, Yongwan Chun, Hyun Kim\",\"doi\":\"10.1111/gean.12321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Except for about a half dozen papers, virtually all (co)authored by Griffith, the existing literature lacks much content about the interface between spatial optimization, a popular form of geographic analysis, and spatial autocorrelation, a fundamental property of georeferenced data. The popular <i>p</i>-median location-allocation problem highlights this situation: the empirical geographic distribution of demand virtually always exhibits positive spatial autocorrelation. This property of geospatial data offers additional overlooked information for solving such spatial optimization problems when it actually relates to their solutions. With a proof-of-concept outlook, this paper articulates connections between the well-known Majority Theorem of the 1-median minisum problem and local indices of spatial autocorrelation; the LISA statistics appear to be the more useful of these later statistics because they better embrace negative spatial autocorrelation. The relationship articulation outlined here results in the positing of a new proposition labeled the egalitarian theorem.</p>\",\"PeriodicalId\":12533,\"journal\":{\"name\":\"Geographical Analysis\",\"volume\":\"55 1\",\"pages\":\"107-124\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2022-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geographical Analysis\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gean.12321\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geographical Analysis","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gean.12321","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
The Majority Theorem for the Single (p = 1) Median Problem and Local Spatial Autocorrelation
Except for about a half dozen papers, virtually all (co)authored by Griffith, the existing literature lacks much content about the interface between spatial optimization, a popular form of geographic analysis, and spatial autocorrelation, a fundamental property of georeferenced data. The popular p-median location-allocation problem highlights this situation: the empirical geographic distribution of demand virtually always exhibits positive spatial autocorrelation. This property of geospatial data offers additional overlooked information for solving such spatial optimization problems when it actually relates to their solutions. With a proof-of-concept outlook, this paper articulates connections between the well-known Majority Theorem of the 1-median minisum problem and local indices of spatial autocorrelation; the LISA statistics appear to be the more useful of these later statistics because they better embrace negative spatial autocorrelation. The relationship articulation outlined here results in the positing of a new proposition labeled the egalitarian theorem.
期刊介绍:
First in its specialty area and one of the most frequently cited publications in geography, Geographical Analysis has, since 1969, presented significant advances in geographical theory, model building, and quantitative methods to geographers and scholars in a wide spectrum of related fields. Traditionally, mathematical and nonmathematical articulations of geographical theory, and statements and discussions of the analytic paradigm are published in the journal. Spatial data analyses and spatial econometrics and statistics are strongly represented.