{"title":"分裂可行性问题、平衡问题和单调算子和的零的收敛性定理","authors":"O. Oyewole, L. Jolaoso, O. Mewomo, S. H. Khan","doi":"10.5269/bspm.51319","DOIUrl":null,"url":null,"abstract":"The main purpose of this paper is to introduce a parallel iterative algorithm for approximating the solution of a split feasibility problem on the zero of monotone operators, generalized mixed equilibrium problem and fixed point problem. Using our algorithm, we state and prove a strong convergence theorem for approximating a common element in the set of solutions of a problem of finding zeroes of sum of two monotone operators,generalized mixed equilibrium problem and fixed point problem for a finite family of $\\eta$-demimetric mappings in the frame work of a reflexive, strictly convex and smooth Banach spaces. We also give a numerical experiment applying our main result. Our result improves, extends and unifies other results in this direction in the literature.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence theorem for split feasibility problem, equilibrium problem and zeroes of sum of monotone operators\",\"authors\":\"O. Oyewole, L. Jolaoso, O. Mewomo, S. H. Khan\",\"doi\":\"10.5269/bspm.51319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main purpose of this paper is to introduce a parallel iterative algorithm for approximating the solution of a split feasibility problem on the zero of monotone operators, generalized mixed equilibrium problem and fixed point problem. Using our algorithm, we state and prove a strong convergence theorem for approximating a common element in the set of solutions of a problem of finding zeroes of sum of two monotone operators,generalized mixed equilibrium problem and fixed point problem for a finite family of $\\\\eta$-demimetric mappings in the frame work of a reflexive, strictly convex and smooth Banach spaces. We also give a numerical experiment applying our main result. Our result improves, extends and unifies other results in this direction in the literature.\",\"PeriodicalId\":44941,\"journal\":{\"name\":\"Boletim Sociedade Paranaense de Matematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim Sociedade Paranaense de Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5269/bspm.51319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.51319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Convergence theorem for split feasibility problem, equilibrium problem and zeroes of sum of monotone operators
The main purpose of this paper is to introduce a parallel iterative algorithm for approximating the solution of a split feasibility problem on the zero of monotone operators, generalized mixed equilibrium problem and fixed point problem. Using our algorithm, we state and prove a strong convergence theorem for approximating a common element in the set of solutions of a problem of finding zeroes of sum of two monotone operators,generalized mixed equilibrium problem and fixed point problem for a finite family of $\eta$-demimetric mappings in the frame work of a reflexive, strictly convex and smooth Banach spaces. We also give a numerical experiment applying our main result. Our result improves, extends and unifies other results in this direction in the literature.