推特上COVID-19疫苗主题多类分类的叠加集成分类器实现

Rama Jayapermana, Aradea Aradea, Neng Ika Kurniati
{"title":"推特上COVID-19疫苗主题多类分类的叠加集成分类器实现","authors":"Rama Jayapermana, Aradea Aradea, Neng Ika Kurniati","doi":"10.15294/sji.v9i1.31648","DOIUrl":null,"url":null,"abstract":"Purpose: However, from the variety of uses of these algorithms, in general, accuracy problems are still a concern today, even accuracy problems related to multi-class classification still require further research.Methods: This study proposes a stacking ensemble classifier method to produce better accuracy by combining Logistic Regression, Random Forest, and Support Vector Machine (SVM) algorithms as first-level learners and using Logistic Regression as a meta-learner for the multi-class classification of COVID-19 vaccine topics on Twitter.Result: Based on the evaluation, the proposed Stacking Ensemble Classifier model shows 86% accuracy, 85% precision, 86% recall, and 85% f1-score.Novelty: The novelty is produce better accuracy by combining Logistic Regression, Random Forest, and Support Vector Machine (SVM) algorithms as first-level learners and using Logistic Regression as a meta-learner.","PeriodicalId":30781,"journal":{"name":"Scientific Journal of Informatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Implementation of Stacking Ensemble Classifier for Multi-class Classification of COVID-19 Vaccines Topics on Twitter\",\"authors\":\"Rama Jayapermana, Aradea Aradea, Neng Ika Kurniati\",\"doi\":\"10.15294/sji.v9i1.31648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: However, from the variety of uses of these algorithms, in general, accuracy problems are still a concern today, even accuracy problems related to multi-class classification still require further research.Methods: This study proposes a stacking ensemble classifier method to produce better accuracy by combining Logistic Regression, Random Forest, and Support Vector Machine (SVM) algorithms as first-level learners and using Logistic Regression as a meta-learner for the multi-class classification of COVID-19 vaccine topics on Twitter.Result: Based on the evaluation, the proposed Stacking Ensemble Classifier model shows 86% accuracy, 85% precision, 86% recall, and 85% f1-score.Novelty: The novelty is produce better accuracy by combining Logistic Regression, Random Forest, and Support Vector Machine (SVM) algorithms as first-level learners and using Logistic Regression as a meta-learner.\",\"PeriodicalId\":30781,\"journal\":{\"name\":\"Scientific Journal of Informatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Journal of Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15294/sji.v9i1.31648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Journal of Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15294/sji.v9i1.31648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

然而,从这些算法的各种用途来看,总的来说,准确率问题仍然是一个值得关注的问题,甚至涉及到多类分类的准确率问题也需要进一步的研究。方法:结合Logistic回归、随机森林和支持向量机(SVM)算法作为一级学习器,利用Logistic回归作为元学习器对Twitter上的COVID-19疫苗主题进行多类分类,提出了一种具有更好准确率的叠加集成分类器方法。结果:基于评价,提出的堆叠集成分类器模型准确率为86%,精密度为85%,召回率为86%,f1-score为85%。新颖性:新颖性是通过结合逻辑回归、随机森林和支持向量机(SVM)算法作为一级学习器,并使用逻辑回归作为元学习器来产生更好的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of Stacking Ensemble Classifier for Multi-class Classification of COVID-19 Vaccines Topics on Twitter
Purpose: However, from the variety of uses of these algorithms, in general, accuracy problems are still a concern today, even accuracy problems related to multi-class classification still require further research.Methods: This study proposes a stacking ensemble classifier method to produce better accuracy by combining Logistic Regression, Random Forest, and Support Vector Machine (SVM) algorithms as first-level learners and using Logistic Regression as a meta-learner for the multi-class classification of COVID-19 vaccine topics on Twitter.Result: Based on the evaluation, the proposed Stacking Ensemble Classifier model shows 86% accuracy, 85% precision, 86% recall, and 85% f1-score.Novelty: The novelty is produce better accuracy by combining Logistic Regression, Random Forest, and Support Vector Machine (SVM) algorithms as first-level learners and using Logistic Regression as a meta-learner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
13
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信