Xuexue Zhang, Xiaokang Niu, Qin Chen, Xin Chen, Depeng Cheng, Jing Feng, Jun Feng, Lianming Li
{"title":"用于5G通信的65纳米CMOS 39 ghz反相变增益功率放大器","authors":"Xuexue Zhang, Xiaokang Niu, Qin Chen, Xin Chen, Depeng Cheng, Jing Feng, Jun Feng, Lianming Li","doi":"10.1109/LMWC.2022.3180999","DOIUrl":null,"url":null,"abstract":"This letter presents a 39-GHz phase-inverting variable gain power amplifier (VGPA) for 5G communication. Adopting a Gilbert structure-based variable gain amplifier (VGA) stage, the VGPA realized the dB-linear gain control characteristic as well as 180° phase inversion. At 0°/180° phase states, the 39-GHz VGPA achieves the maximum gain of 38.7/38.9 dB with gain tuning range of 5.6/5.2 dB, respectively. Over 38–43 GHz, the phase inversion error is limited within 5.9°, and the rms phase error is less than 3.6°/2.2°. Meanwhile, with the metal interleaving coplanar transformer matching network, this VGPA achieves 17.7/17.6-dBm Psat and 13.2/13.36-dBm OP1 dB, with the power added efficiency (PAE) of 35%/34.5% and 13.6%/14.4% at the saturation and 1-dB compression points, respectively. Over the gain control states, the OP1 dB fluctuation is less than 0.3 dB. Implemented in a 65-nm CMOS process, the proposed VGPA consumes 150 mW with a chip area of 0.3 mm2.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1303-1306"},"PeriodicalIF":2.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A 39-GHz Phase-Inverting Variable Gain Power Amplifier in 65-nm CMOS for 5G Communication\",\"authors\":\"Xuexue Zhang, Xiaokang Niu, Qin Chen, Xin Chen, Depeng Cheng, Jing Feng, Jun Feng, Lianming Li\",\"doi\":\"10.1109/LMWC.2022.3180999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents a 39-GHz phase-inverting variable gain power amplifier (VGPA) for 5G communication. Adopting a Gilbert structure-based variable gain amplifier (VGA) stage, the VGPA realized the dB-linear gain control characteristic as well as 180° phase inversion. At 0°/180° phase states, the 39-GHz VGPA achieves the maximum gain of 38.7/38.9 dB with gain tuning range of 5.6/5.2 dB, respectively. Over 38–43 GHz, the phase inversion error is limited within 5.9°, and the rms phase error is less than 3.6°/2.2°. Meanwhile, with the metal interleaving coplanar transformer matching network, this VGPA achieves 17.7/17.6-dBm Psat and 13.2/13.36-dBm OP1 dB, with the power added efficiency (PAE) of 35%/34.5% and 13.6%/14.4% at the saturation and 1-dB compression points, respectively. Over the gain control states, the OP1 dB fluctuation is less than 0.3 dB. Implemented in a 65-nm CMOS process, the proposed VGPA consumes 150 mW with a chip area of 0.3 mm2.\",\"PeriodicalId\":13130,\"journal\":{\"name\":\"IEEE Microwave and Wireless Components Letters\",\"volume\":\"32 1\",\"pages\":\"1303-1306\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Microwave and Wireless Components Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/LMWC.2022.3180999\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3180999","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A 39-GHz Phase-Inverting Variable Gain Power Amplifier in 65-nm CMOS for 5G Communication
This letter presents a 39-GHz phase-inverting variable gain power amplifier (VGPA) for 5G communication. Adopting a Gilbert structure-based variable gain amplifier (VGA) stage, the VGPA realized the dB-linear gain control characteristic as well as 180° phase inversion. At 0°/180° phase states, the 39-GHz VGPA achieves the maximum gain of 38.7/38.9 dB with gain tuning range of 5.6/5.2 dB, respectively. Over 38–43 GHz, the phase inversion error is limited within 5.9°, and the rms phase error is less than 3.6°/2.2°. Meanwhile, with the metal interleaving coplanar transformer matching network, this VGPA achieves 17.7/17.6-dBm Psat and 13.2/13.36-dBm OP1 dB, with the power added efficiency (PAE) of 35%/34.5% and 13.6%/14.4% at the saturation and 1-dB compression points, respectively. Over the gain control states, the OP1 dB fluctuation is less than 0.3 dB. Implemented in a 65-nm CMOS process, the proposed VGPA consumes 150 mW with a chip area of 0.3 mm2.
期刊介绍:
The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.