y2=x3−3pqx型具有秩为零和一的椭圆曲线

IF 0.5 Q3 MATHEMATICS
R. Mina, J. B. Bacani
{"title":"y2=x3−3pqx型具有秩为零和一的椭圆曲线","authors":"R. Mina, J. B. Bacani","doi":"10.47836/mjms.17.1.06","DOIUrl":null,"url":null,"abstract":"The group of rational points on an elliptic curve over Q is always a finitely generated Abelian group, hence isomorphic to Zr×G with G a finite Abelian group. Here, r is the rank of the elliptic curve. In this paper, we determine sufficient conditions that need to be set on the prime numbers p and q so that the elliptic curve E:y2=x3−3pqx over Q would possess a rank zero or one. Specifically, we verify that if distinct primes p and q satisfy the congruence p≡q≡5(mod24), then E has rank zero. Furthermore, if p≡5(mod12) is considered instead of a modulus of 24, then E has rank zero or one. Lastly, for primes of the form p=24k+17 and q=24ℓ+5, where 9k+3ℓ+7 is a perfect square, we show that E has rank one.","PeriodicalId":43645,"journal":{"name":"Malaysian Journal of Mathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elliptic Curves of Type y2=x3−3pqx Having Ranks Zero and One\",\"authors\":\"R. Mina, J. B. Bacani\",\"doi\":\"10.47836/mjms.17.1.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The group of rational points on an elliptic curve over Q is always a finitely generated Abelian group, hence isomorphic to Zr×G with G a finite Abelian group. Here, r is the rank of the elliptic curve. In this paper, we determine sufficient conditions that need to be set on the prime numbers p and q so that the elliptic curve E:y2=x3−3pqx over Q would possess a rank zero or one. Specifically, we verify that if distinct primes p and q satisfy the congruence p≡q≡5(mod24), then E has rank zero. Furthermore, if p≡5(mod12) is considered instead of a modulus of 24, then E has rank zero or one. Lastly, for primes of the form p=24k+17 and q=24ℓ+5, where 9k+3ℓ+7 is a perfect square, we show that E has rank one.\",\"PeriodicalId\":43645,\"journal\":{\"name\":\"Malaysian Journal of Mathematical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Malaysian Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47836/mjms.17.1.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/mjms.17.1.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Q上椭圆曲线上的有理点群始终是有限生成的阿贝尔群,因此同构于Zr×G,其中G是有限阿贝尔群。这里,r是椭圆曲线的秩。在本文中,我们确定了需要在素数p和q上设置的充分条件,使得q上的椭圆曲线E:y2=x3−3pqx具有秩0或1。具体地,我们验证了如果不同素数p和q满足同余p Select q Select 5(mod24),则E的秩为零。此外,如果考虑p≠5(mod12)而不是24的模,则E的秩为零或一。最后,对于形式为p=24k+17和q=24的素数ℓ+5,其中9k+3ℓ+7是一个完美的正方形,我们证明了E的秩为一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elliptic Curves of Type y2=x3−3pqx Having Ranks Zero and One
The group of rational points on an elliptic curve over Q is always a finitely generated Abelian group, hence isomorphic to Zr×G with G a finite Abelian group. Here, r is the rank of the elliptic curve. In this paper, we determine sufficient conditions that need to be set on the prime numbers p and q so that the elliptic curve E:y2=x3−3pqx over Q would possess a rank zero or one. Specifically, we verify that if distinct primes p and q satisfy the congruence p≡q≡5(mod24), then E has rank zero. Furthermore, if p≡5(mod12) is considered instead of a modulus of 24, then E has rank zero or one. Lastly, for primes of the form p=24k+17 and q=24ℓ+5, where 9k+3ℓ+7 is a perfect square, we show that E has rank one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
20.00%
发文量
0
期刊介绍: The Research Bulletin of Institute for Mathematical Research (MathDigest) publishes light expository articles on mathematical sciences and research abstracts. It is published twice yearly by the Institute for Mathematical Research, Universiti Putra Malaysia. MathDigest is targeted at mathematically informed general readers on research of interest to the Institute. Articles are sought by invitation to the members, visitors and friends of the Institute. MathDigest also includes abstracts of thesis by postgraduate students of the Institute.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信