第二类紧生派生范畴的Koszul对偶性

IF 0.7 2区 数学 Q2 MATHEMATICS
Ai Guan, A. Lazarev
{"title":"第二类紧生派生范畴的Koszul对偶性","authors":"Ai Guan, A. Lazarev","doi":"10.4171/jncg/438","DOIUrl":null,"url":null,"abstract":"For any dg algebra $A$ we construct a closed model category structure on dg $A$-modules such that the corresponding homotopy category is compactly generated by dg $A$-modules that are finitely generated and free over $A$ (disregarding the differential). We prove that this closed model category is Quillen equivalent to the category of comodules over a certain, possibly nonconilpotent dg coalgebra, a so-called extended bar construction of $A$. This generalises and complements certain aspects of dg Koszul duality for associative algebras.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Koszul duality for compactly generated derived categories of second kind\",\"authors\":\"Ai Guan, A. Lazarev\",\"doi\":\"10.4171/jncg/438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any dg algebra $A$ we construct a closed model category structure on dg $A$-modules such that the corresponding homotopy category is compactly generated by dg $A$-modules that are finitely generated and free over $A$ (disregarding the differential). We prove that this closed model category is Quillen equivalent to the category of comodules over a certain, possibly nonconilpotent dg coalgebra, a so-called extended bar construction of $A$. This generalises and complements certain aspects of dg Koszul duality for associative algebras.\",\"PeriodicalId\":54780,\"journal\":{\"name\":\"Journal of Noncommutative Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Noncommutative Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jncg/438\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jncg/438","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

对于任意dg代数$A$,我们在dg $A$-模上构造了一个闭模型范畴结构,使得相应的同伦范畴是由dg $A$-模紧生成的,这些模在$A$上是有限生成且自由的(不考虑微分)。我们证明了这个封闭模型范畴是Quillen等价于某一可能非共幂的dg协代数上的模范畴,即所谓的a的扩展棒构造。这推广并补充了关联代数的dg - Koszul对偶性的某些方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Koszul duality for compactly generated derived categories of second kind
For any dg algebra $A$ we construct a closed model category structure on dg $A$-modules such that the corresponding homotopy category is compactly generated by dg $A$-modules that are finitely generated and free over $A$ (disregarding the differential). We prove that this closed model category is Quillen equivalent to the category of comodules over a certain, possibly nonconilpotent dg coalgebra, a so-called extended bar construction of $A$. This generalises and complements certain aspects of dg Koszul duality for associative algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular: Hochschild and cyclic cohomology K-theory and index theory Measure theory and topology of noncommutative spaces, operator algebras Spectral geometry of noncommutative spaces Noncommutative algebraic geometry Hopf algebras and quantum groups Foliations, groupoids, stacks, gerbes Deformations and quantization Noncommutative spaces in number theory and arithmetic geometry Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信