{"title":"随机游走空间上的Cahn-Hilliard方程","authors":"Jos'e M. Maz'on, J. Toledo","doi":"10.1142/s0219530523500045","DOIUrl":null,"url":null,"abstract":"In this paper we study a nonlocal Cahn-Hilliard model (CHE) in the framework of random walk spaces, which includes as particular cases, the CHE on locally finite weighted connected graphs, the CHE determined by finite Markov chains or the Cahn-Hilliard Equations driven by convolution integrable kernels. We consider different transitions for the phase and the chemical potential, and a large class of potentials including obstacle ones. We prove existence and uniqueness of solutions in $L^1$ of the Cahn-Hilliard Equation. We also show that the Cahn-Hilliard equation is the gradient flow of the Ginzburg-Landau free energy functional on an appropriate Hilbert space. We finally study the asymptotic behaviour of the solutions.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cahn-Hilliard Equations on Random Walk Spaces\",\"authors\":\"Jos'e M. Maz'on, J. Toledo\",\"doi\":\"10.1142/s0219530523500045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study a nonlocal Cahn-Hilliard model (CHE) in the framework of random walk spaces, which includes as particular cases, the CHE on locally finite weighted connected graphs, the CHE determined by finite Markov chains or the Cahn-Hilliard Equations driven by convolution integrable kernels. We consider different transitions for the phase and the chemical potential, and a large class of potentials including obstacle ones. We prove existence and uniqueness of solutions in $L^1$ of the Cahn-Hilliard Equation. We also show that the Cahn-Hilliard equation is the gradient flow of the Ginzburg-Landau free energy functional on an appropriate Hilbert space. We finally study the asymptotic behaviour of the solutions.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219530523500045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530523500045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
In this paper we study a nonlocal Cahn-Hilliard model (CHE) in the framework of random walk spaces, which includes as particular cases, the CHE on locally finite weighted connected graphs, the CHE determined by finite Markov chains or the Cahn-Hilliard Equations driven by convolution integrable kernels. We consider different transitions for the phase and the chemical potential, and a large class of potentials including obstacle ones. We prove existence and uniqueness of solutions in $L^1$ of the Cahn-Hilliard Equation. We also show that the Cahn-Hilliard equation is the gradient flow of the Ginzburg-Landau free energy functional on an appropriate Hilbert space. We finally study the asymptotic behaviour of the solutions.