{"title":"大次随机多项式的不可约性","authors":"E. Breuillard, P. P. Varj'u","doi":"10.4310/ACTA.2019.v223.n2.a1","DOIUrl":null,"url":null,"abstract":"We consider random polynomials with independent identically distributed coefficients with a fixed law. Assuming the Riemann hypothesis for Dedekind zeta functions, we prove that such polynomials are irreducible and their Galois groups contain the alternating group with high probability as the degree goes to infinity. This settles a conjecture of Odlyzko and Poonen conditionally on RH for Dedekind zeta functions.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Irreducibility of random polynomials of large degree\",\"authors\":\"E. Breuillard, P. P. Varj'u\",\"doi\":\"10.4310/ACTA.2019.v223.n2.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider random polynomials with independent identically distributed coefficients with a fixed law. Assuming the Riemann hypothesis for Dedekind zeta functions, we prove that such polynomials are irreducible and their Galois groups contain the alternating group with high probability as the degree goes to infinity. This settles a conjecture of Odlyzko and Poonen conditionally on RH for Dedekind zeta functions.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2018-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ACTA.2019.v223.n2.a1\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ACTA.2019.v223.n2.a1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Irreducibility of random polynomials of large degree
We consider random polynomials with independent identically distributed coefficients with a fixed law. Assuming the Riemann hypothesis for Dedekind zeta functions, we prove that such polynomials are irreducible and their Galois groups contain the alternating group with high probability as the degree goes to infinity. This settles a conjecture of Odlyzko and Poonen conditionally on RH for Dedekind zeta functions.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.