M. Bono, A. Zouari, T. Le Jolu, D. Le Boulch, H. Tabouret, J. Crépin, J. Besson
{"title":"测量管状样品破坏应变的压缩双轴膨胀实验","authors":"M. Bono, A. Zouari, T. Le Jolu, D. Le Boulch, H. Tabouret, J. Crépin, J. Besson","doi":"10.1111/str.12462","DOIUrl":null,"url":null,"abstract":"The failure strain of a tube is a function of the biaxial strain ratio (axial strain/hoop strain) to which it is subjected. The relationship between failure strain and the strain ratio can be determined experimentally using expansion due to compression tests with a tensile load (EDCT), in which a ductile pellet placed inside the tube is compressed axially so it expands in diameter and imposes a hoop strain on the tube. At the same time, a tensile load on the ends of the tube creates an axial strain. This study investigates the capabilities and limitations of EDCT tests using two devices that allow experiments to be performed on a standard tensile testing machine. The first device applies an axial force on the ends of the sample, and the second device applies an axial displacement. Tests on zirconium alloy tubes confirmed that the failure strain is dependent on the strain ratio and the metallurgical state of the material. EDCT tests can produce a range of strain ratios, but there is an upper limit on the strain ratio that can be obtained, and it is dependent on the plastic behaviour of the sample and the friction conditions between the components.","PeriodicalId":51176,"journal":{"name":"Strain","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biaxial expansion due to compression experiments for measuring the failure strain of tubular samples\",\"authors\":\"M. Bono, A. Zouari, T. Le Jolu, D. Le Boulch, H. Tabouret, J. Crépin, J. Besson\",\"doi\":\"10.1111/str.12462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The failure strain of a tube is a function of the biaxial strain ratio (axial strain/hoop strain) to which it is subjected. The relationship between failure strain and the strain ratio can be determined experimentally using expansion due to compression tests with a tensile load (EDCT), in which a ductile pellet placed inside the tube is compressed axially so it expands in diameter and imposes a hoop strain on the tube. At the same time, a tensile load on the ends of the tube creates an axial strain. This study investigates the capabilities and limitations of EDCT tests using two devices that allow experiments to be performed on a standard tensile testing machine. The first device applies an axial force on the ends of the sample, and the second device applies an axial displacement. Tests on zirconium alloy tubes confirmed that the failure strain is dependent on the strain ratio and the metallurgical state of the material. EDCT tests can produce a range of strain ratios, but there is an upper limit on the strain ratio that can be obtained, and it is dependent on the plastic behaviour of the sample and the friction conditions between the components.\",\"PeriodicalId\":51176,\"journal\":{\"name\":\"Strain\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strain\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1111/str.12462\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strain","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/str.12462","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Biaxial expansion due to compression experiments for measuring the failure strain of tubular samples
The failure strain of a tube is a function of the biaxial strain ratio (axial strain/hoop strain) to which it is subjected. The relationship between failure strain and the strain ratio can be determined experimentally using expansion due to compression tests with a tensile load (EDCT), in which a ductile pellet placed inside the tube is compressed axially so it expands in diameter and imposes a hoop strain on the tube. At the same time, a tensile load on the ends of the tube creates an axial strain. This study investigates the capabilities and limitations of EDCT tests using two devices that allow experiments to be performed on a standard tensile testing machine. The first device applies an axial force on the ends of the sample, and the second device applies an axial displacement. Tests on zirconium alloy tubes confirmed that the failure strain is dependent on the strain ratio and the metallurgical state of the material. EDCT tests can produce a range of strain ratios, but there is an upper limit on the strain ratio that can be obtained, and it is dependent on the plastic behaviour of the sample and the friction conditions between the components.
期刊介绍:
Strain is an international journal that contains contributions from leading-edge research on the measurement of the mechanical behaviour of structures and systems. Strain only accepts contributions with sufficient novelty in the design, implementation, and/or validation of experimental methodologies to characterize materials, structures, and systems; i.e. contributions that are limited to the application of established methodologies are outside of the scope of the journal. The journal includes papers from all engineering disciplines that deal with material behaviour and degradation under load, structural design and measurement techniques. Although the thrust of the journal is experimental, numerical simulations and validation are included in the coverage.
Strain welcomes papers that deal with novel work in the following areas:
experimental techniques
non-destructive evaluation techniques
numerical analysis, simulation and validation
residual stress measurement techniques
design of composite structures and components
impact behaviour of materials and structures
signal and image processing
transducer and sensor design
structural health monitoring
biomechanics
extreme environment
micro- and nano-scale testing method.